
Reprinted from the

Proceedings of the
Linux Symposium

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Tux on the Air: The State of Linux Wireless Networking

John W. Linville
Red Hat, Inc.

linville@redhat.com

Abstract

“They just want their hardware to work,” said Jeff
Garzik in his assessment on the state of Linux wireless
networking in early 2006. Since then, more and more
of “them” have their wish. Lots of hardware works, and
most users have little or no trouble using their Linux lap-
tops at their favorite cafe or hotspot. Wireless network-
ing no longer tops the list of complaints about Linux. Of
course, some problems persist. . . and new things are on
the horizon.

This paper will discuss the current state of Linux wire-
less networking, mostly from a kernel perspective. We
will explore where we are, some of how we got here,
and a little of why things are the way they are. We will
also preview some of what is to come and how we plan
to get there.

1 Where have we been?

The original wireless LAN devices were what are now
called “full MAC” devices. These devices go to a great
deal of effort to present themselves to the host processor
very much like an ethernet device. They tend to have
large firmware images that create that illusion, and only
add the requirement of configuring parameters particu-
lar to dealing with wireless LANs such as specifying a
Service Set IDentifier (SSID).

Devices with “full MAC” designs are not particularly
prone to being forced into modes that do not comply
with governmental regulations. As a result, vendors of
such devices tend to be more open to supporting open
source drivers. Examples include the old Prism2 and
the early Prism54 devices, which are well supported by
drivers in the Linux kernel. Unfortunately, the require-
ment for large firmware images tends to increase the
costs associated with producing this kind of device.

Newer consumer-oriented wireless LAN devices tend to
utilize what is known as a “half MAC” or “soft MAC”

design. These devices minimize the work done using
firmware on the devices themselves. Instead, only criti-
cal functions are performed by the device firmware, and
higher functions like connection management are trans-
fered to the host processor. This solves problems for
hardware manufacturers, but makes life more difficult
for open source software in more ways than one.

The chief problem created by the shift to “soft MAC”
designs is the need for software to perform those func-
tions on the host processor that had previously been
performed by firmware on the wireless LAN device.
The early Intel Centrino wireless drivers used a com-
ponent called “ieee80211” to perform these functions.
The ieee80211 component used code adapted from
the earlier hostapd driver for Prism2 devices.

Unfortunately, the early Centrino wireless hardware
designs were not sufficiently general to apply the
ieee80211 code directly to other drivers. In re-
sponse to that need, Johannes Berg developed an ex-
tension to that code to support true “soft MAC” de-
signs. The original bcm43xx and zd1211rw drivers
used this “ieee80211softmac” code successfully, as did
a few more drivers that never got merged into the main-
line Linux kernel. However, many developers (includ-
ing Johannes Berg) felt that this combination of code
was poorly integrated and the source of many problems.

About this time, Devicescape released source code to
what would eventually become the mac80211 com-
ponent. Most of the active wireless developers ral-
lied around this code and so all new development for
“soft MAC” devices was shifted to this codebase. Un-
fortunately, many core Linux networking developers
quickly identified systemic problems with the code from
Devicescape. Thankfully, Jiri Benc adopted the De-
vicescape code and began working to resolve these
problems. After many months, a great deal of code
pruning, and some help from Michael Wu, Johannes
Berg, and others, the new mac80211 component was
initially merged into the Linux kernel version 2.6.22.

• 39 •



40 • Tux on the Air: The State of Linux Wireless Networking

The remaining drivers were merged later, and finally
there was much rejoicing.

Now things are much better. Of course, the Linux ker-
nel continues to support “full MAC” designs, and now
it has infrastructure to support “soft MAC” devices as
well. Thanks to this new infrastructure, it is possible to
add new features to a whole set of related drivers with a
minimal set of changes. Linux is well on its way to be-
ing a first-class platform for all forms of wireless LAN
networking.

2 Where are we now?

The past is the past. What is the situation now? What
drivers are available? Which ones are coming soon?
How fast is wireless LAN development progressing?
Where can I get the latest code? Where can I find cur-
rent information? And what is coming next?

2.1 Driver status

Several wireless LAN drivers have been developed and
merged into the mainstream kernel over the past few
years. Still more are currently under development.
Sadly, a few may never appear.

2.1.1 Current Drivers

Table 1 represents the 802.11 wireless LAN drivers
available in the 2.6.25 kernel which were originally
merged in 2006 or later. As you can see, nearly all of
them are based upon the mac80211 infrastructure. The
notable exception is libertas. That driver was devel-
oped for use in the One Laptop Per Child’s XO laptop,
which relied on extensive firmware both for power man-
agement and for implementing a pre-standard version
of mesh networking. The other exception is rndis_
wlan, which is primarily an extension of the existing
rndis_host ethernet driver to also support configu-
ration of wireless devices which implement the RNDIS
standard. Aside from these two, all of the other drivers
are for “soft MAC” devices.

All of these drivers support infrastructure mode (a.k.a.
“managed mode”) and most of them support IBSS mode
(a.k.a. “ad-hoc mode”) as well. These drivers can rea-
sonably be expected to work well with NetworkMan-
ager and similar applications as well as the traditional
wireless configuration tools (e.g., iwconfig).

Driver Hardware Vendor Uses mac80211?
adm8211 ADMTek Y
ath5k Atheros Y
b43 Broadcom Y
b43legacy Broadcom Y
iwl3945 Intel Y
iwl4965 Intel Y
libertas Marvell N
p54pci Intersil Y
p54usb Intersil Y
rndis_wlan Various N
rt2400pci Ralink Y
rt2500pci Ralink Y
rt2500usb Ralink Y
rt61pci Ralink Y
rt73usb Ralink Y
rtl8180 Realtek Y
rtl8187 Realtek Y
zd1211rw ZyDAS Y

Table 1: New drivers since 2005

2.1.2 Drivers In Progress

A number of drivers have been started but are not yet
completed or mergeable for one reason or another. Rea-
sons include questionable reverse-engineering practices,
incomplete specifications, or simply a lack of develop-
ers working on producing a mergeable driver.

The tiacx driver for the Texas Instruments ACX100
chipset has been around for a long time. At one time
this driver was working well and had been successfully
ported to the mac80211 infrastructure. Unfortunately,
questions were raised about the reverse engineering pro-
cess used to create the initial version of this driver. It
is possible that TI could clarify this driver’s legal sta-
tus. Otherwise, work similar to that done by the SFLC
to verify the provenance of the ath5k driver will be
required to remove the legal clouds currently prevent-
ing this driver from being merged into the mainstream
Linux kernel.

The agnx driver for the Airgo chipsets1 is based upon
a set of reverse-engineered specifications2 as well. To
date, this team has maintained a rigid separation be-
tween reverse engineers and driver authors. This is the
same technique used with good results to implement the
b43 and b43legacy drivers. Unfortunately, the main

1http://git.sipsolutions.net/?p=agnx.git
2http://airgo.wdwconsulting.net/mymoin



2008 Linux Symposium, Volume Two • 41

reverse engineer has had to leave the project for personal
reasons. Worse, the driver is still not fully functional.
Until the agnx reverse engineering team is reconsti-
tuted, this driver remains in limbo.

The at76_usb driver supports USB wireless chipsets
from Atmel. This driver has been ported to the
mac80211 infrastructure and it works reasonably well.
It is possible that it will be merged as early as the 2.6.27
merge window.

A driver has appeared recently for the Marvell 88w8335
chipset. These are PCI (and CardBus) devices manufac-
tured a few years ago, and Marvell has shown little in-
terest in supporting an upstream driver for them. While
these devices were marketed under the “Libertas” brand,
these devices bear little or no resemblance to those cov-
ered by the libertas driver. The driver for these de-
vices is called mrv8kng and it has been posted for re-
view. Hopefully that will lead to it being mergeable as
early as the 2.6.27 merge window as well.

Marvell has shown interest in supporting a driver for
their current TopDog chipset. They have released a
driver based on the net80211 infrastructure from the
Madwifi project, and they have provided some minimal
documentation on the firmware for their device. Unfor-
tunately, no one is known to be actively working to port
this driver to mac80211 or to make it mergeable into
the mainstream kernel.

2.1.3 Unlikely Drivers

Hardware vendors come and go, and some products are
more successful than others. Nowadays most Linux
wireless drivers are reverse engineered, and reverse en-
gineering takes lots of both motivation and skill. While
it is certainly possible that a motivated and skilled re-
verse engineer will apply his craft to produce a driver
for an uncommon hardware device, the odds are against
such an occurrence. So wireless devices that enjoyed
limited market penetration and are no longer in produc-
tion are unlikely to ever get a native Linux driver. One
example of such a device is the InProComm IPN2220.
Unfortunately, NDISwrapper will likely remain the only
viable solution for making this hardware work under
Linux.

2.2 Patch Activity

Take it from the author, someone who knows: wireless
LAN is currently one of the fastest developing segments
of the Linux kernel. New drivers or new features arrive
nearly every month, and the large portions continue to
undergo extensive refactoring as lessons are learned and
functionality is extended. In fact, some might say that
too much refactoring continues to occur! Nevertheless,
the wireless developers continue to be prolific coders.

This is not simply anecdotal—Linux Weekly News
(LWN) regularly documents patch activity in the ker-
nel as it nears each release. Because of the role the au-
thor plays as wireless maintainer, the number of Linux
kernel Signed-off-by’s for the author provides a good
proxy for the level of activity around wireless LAN in
the kernel. For 2.6.24, LWN placed the author as the
#5 “gatekeeper” for patches going into the linux ker-
nel.3 This represented over 4% of the total patches in
that release, or more than 1 out of every 25. For 2.6.25,
it was a full 5%, or 1 out of every 20 patches.4 This
is all the more impressive when one considers that no
wireless vendor other than Intel provides direct devel-
oper services.5 Given the amount of work remaining, I
see no reason to believe that this level of production will
change significantly in the near future.

2.3 How does someone get the code?

Given the quick pace which continues around the Linux
kernel in the area of wireless LAN development, not
all distributions are shipping with current wireless code.
All of this progress does one no good if you do not have
the code. So how is a user to go about getting it?

2.3.1 Development Trees

Ongoing development is done using git, now the stan-
dard revision control system for the Linux kernel. Mul-
tiple trees are used in order to accomodate various
needs relating both to distributing patches to other ker-
nel maintainers and to facilitating further development.

3http://lwn.net/Articles/264440/
4http://lwn.net/Articles/275954/
5In fact, nearly all of the prominent wireless developers are uni-

versity students!



42 • Tux on the Air: The State of Linux Wireless Networking

Most of these trees are of no interest either to end users
or to casual developers.

The tree that is of interest is the wireless-testing tree,
git://git.kernel.org/pub/scm/linux/
kernel/git/linville/wireless-testing.
git. This tree is generally based on a recent “rc”
release (e.g., 2.6.25-rc9) from Linus. It also includes
any patches destined for the current release that have
not yet been merged by Linus, as well as any patches
queued for the next release. This tree might also include
drivers that are still in development and are not yet
considered stable enough for inclusion even in the next
kernel release. Consequently, this tree is intended as
the base for any significant wireless LAN development.
Users or developers seeking an up-to-date wireless
LAN codebase should use this tree.

2.3.2 The compat-wireless-2.6 project

Not everyone is interested in running a “bleeding edge”
kernel. The compat-wireless-2.6 project6 was created to
fill this need. This project provides a means to compile
very recent wireless code in a way that is compatible
with older kernels. At the time of this writing, kernels
as old as 2.6.21 are supported. Even older kernels may
be supported by the time you read this.

The compat-wireless-2.6 project maintains a set of
scripts, patches, and compatibility code. These are com-
bined with code taken from a current wireless-testing
tree. The resulting code is compiled against the user’s
running kernel, resulting in modules that can be loaded
to provide current wireless bugfixes and updated hard-
ware support. Users of enterprise distributions or others
who need to run older kernels may find this project to be
quite useful.

2.3.3 Fedora

Obviously the easiest way to get kernels is through a
distribution. This is especially true for users who may
not be kernel hackers or even software developers at all.
Perhaps unfortunately (or possibly by design), distri-
butions have varying policies regarding kernel updates.
Consequently, not all distributions have an easy means

6http://www.linuxwireless.org/en/users/
Download

for users to run kernels with current wireless LAN code.
One distribution that does provide such kernels is Fe-
dora.

The Fedora build system is called Koji,7 and all offi-
cial Fedora packages are built there. As a Fedora con-
tributor, the author ensures that current wireless fixes
and updates make their way into the Fedora kernel
on a timely basis. The normal Fedora update process
typically makes kernel updates available within a few
weeks. Those too impatient to wait can retrieve later
kernels directly from Koji. Picking the latest kernel built
by the author is usually the best way to find the kernel
with the latest wireless bits:

http://koji.fedoraproject.org/koji/
userinfo?userID=388

2.4 Website

Those simply wanting a starting point for information
about current wireless LAN developments would do
well to vist the Linux Wireless wiki,8 graciously hosted
by Johannes Berg. This site has information organized
for users, hardware vendors, and potential developers.
Since it is a wiki, the site is easily updated as old in-
formation becomes obsolete, and it is open to a wide
variety of potential contributors who may or may not be
actual software developers. The Linux Wireless wiki is
a good first stop for anyone seeking more information
about wireless LAN support in Linux.

3 What is coming?

The road behind us was a hard slough, and now we stand
on steady ground. Yet we are far from home! What
new features are coming to Linux wireless LANs? A
new and better means for configuring wireless devices
is on the way, and new ways for using those devices to
communicate are coming as well.

3.1 Replacing Wireless Extensions with CFG80211

Traditionally Linux wireless interfaces have been con-
figured using an Application Programming Interface
(API) known as Wireless Extensions (WE). This API

7http://koji.fedoraproject.org
8http://wireless.kernel.org



2008 Linux Symposium, Volume Two • 43

is based on a series of ioctl calls, each of which
specifies the parameters of a specific attribute for wire-
less LAN configuration. This API mapped sufficiently
well to the designs of wireless LAN devices that were
prevalent when WE was produced, and it continues to
remain at least minimally serviceable for modern de-
signs. However, WE has many shortcomings. Chief of
these is that it fails to specify a number of details about
what default behaviors should be, what the proper tim-
ing should be, or order of configuration steps, or even
what the exact meaning is intended to be for a number
of parameters. Further, reliance on individual configu-
ration actions for what otherwise might be considered
atomic operations introduces the possibility of race con-
ditions when configuring devices. Also, WE has proven
to be difficult to extend without breaking the kernel’s
pledge of userland Application Binary Interface (ABI)
consistency between releases. Finally, the in-kernel WE
implementation is mostly transparent, forcing individ-
ual drivers to reimplement a number of features of the
API which might otherwise be shared.9 All of this, cou-
pled with the general disdain for ioctl-based inter-
faces which is now prevalent amongst kernel developers,
makes it difficult to extend or even adequately maintain
WE going forward.

In order to address this, work has begun on cfg80211.
This is a component intended to replace WE for config-
uration of wireless interfaces. The cfg80211 compo-
nent should provide a much cleaner API both to user-
land applications and to drivers. The userland interface
(as implemented in the Netlink-based nl80211 com-
ponent) will provide a logical grouping of configura-
tion parameters so that logically atomic operations are
actually handled atomically within the kernel. On the
driver side, cfg80211 will provide an interface that
minimizes the amount of configuration handling that
drivers need to do on their own.10 Finally, the designers
of cfg80211 have attempted to observe the API de-
sign lessons learned over a decade of continuing Linux
development. The cfg80211 component should re-
main both extensible and maintainable for a long time
to come.

9This leads to differing behaviors between drivers and is a poten-
tial source of bugs that might otherwise be avoided.

10This should serve to provide much more consistent wireless
driver behavior observable by userland applications like Network-
Manager.

3.2 “Access point” mode

Most people interested in wireless LAN technology
know that there is a difference between a wireless client
device and a wireless access point. The latter is usu-
ally a small box with antennas on it that plugs into the
wired LAN (e.g., the Ethernet jack on the wall or the
back of a cable modem or DSL modem). Access points
are wireless infrastructure devices that coordinate wire-
less LAN traffic, and they require somewhat different
software to implement this coordination behavior. Fur-
ther, many early wireless device designs made it impos-
sible to implement an access point no matter if you had
the required software or not. This is why the list of de-
vices traditionally supported by the hostapd software
is rather short.

The dirty little secret is that there is not really anything
special about the physical wireless LAN hardware used
in an access point. Usually only the software and/or
firmware controlling it prevents or enables it to be used
as an access point. With older designs, this meant that
access points needed devices with firmware which al-
lowed access point functions to work. With the “soft
MAC” designs which are now prevalent, this means that
software in the kernel can allow a wide variety of de-
vices to be used to implement an access point.

It turns out that the mac80211 component already con-
tains most of the code needed to enable this access point
behavior. However, it is currently disabled in stock ker-
nels. This is because that behavior needs a stable API
for control by userland software (e.g., hostapd), and
such an API has not yet been agreed upon. Work is in
progress (and far along) on implementing support for
such an API in the cfg80211 and nl80211 compo-
nents. The current maintainer of the mac80211 com-
ponent, Johannes Berg, has a series of patches for both
the kernel and for hostapd that enables using Linux
as an access point. This support may be merged into the
mainline kernel as early as version 2.6.27.

3.3 Mesh networking

Many people realize that there are currently two com-
mon modes of communication on wireless LANs: a)
access point or infrastructure mode, where the wireless
client talks to an access point that directs traffic to the
rest of the LAN; and b) ad-hoc or independent BSS
mode, where wireless clients coordinate wireless traffic



44 • Tux on the Air: The State of Linux Wireless Networking

amongst each other, but with traffic limited to stations
that are physically in range of one another. In recent
years a new mode has been under development. This
mode, commonly called mesh networking, is a bit like
a mixture of the two previous modes. Wireless stations
coordinate wireless traffic amongst each other within a
limited range, but also stations can pass traffic between
stations that cannot otherwise reach each other. This en-
ables communication over much larger ranges without
requiring lots of infrastructure, and is therefore ideal for
underdeveloped or disaster-stricken areas. This mode
of communication has seen popular use by the OLPC
project in their XO laptops.

The people that developed the wireless mesh firmware
for the adapters on the XO laptop have also contributed
a pre-standard implementation of mesh networking for
the mac80211 component. The developers from Cozy-
bit seem to be committed to maintaining and improving
this code until the 802.11s specification for mesh net-
working is finalized. This gives Linux a cutting-edge
wireless capability not currently seen in other main-
stream operating systems. Surely this will prove useful
to a great number of people all over the world.

3.4 Multi-Queue Support

The 802.11e wireless standard defines Quality of Ser-
vice (QoS) mechanisms based on classifying traffic into
four queues.11 All pending traffic in the highest prior-
ity queue is transmitted before traffic in the next highest
priority, and so on. The mac80211 component imple-
ments support for this by using a custom queueing dis-
cipline associated with the physical wireless device.

Modern wired LAN devices have evolved designs which
also have multiple queues for supporting QoS applica-
tions. Consequently, the Linux kernel’s networking in-
frastructure has been extended to support the concept of
multiple hardware queues attached to a single network
interface. Now that this exists, it seems sensible to con-
vert the mac80211 component to make use of this new
infrastructure. Work is currently underway to achieve
just that.

4 What else is needed?

So, it seems that things are firming up reasonably well.
Further, the wireless LAN developers already have the

11The queues are designated for voice traffic, video traffic, best-
effort traffic, and background traffic.

next round of work cut out for them. But surely that
is not all that is lacking? There certainly are areas
that need to be addressed. These include better power
management and taking advantage of performance-
enhancing features available to drivers within the Linux
kernel’s networking layer.

4.1 Better Power Management

Power management is an important issue. Not only are
mobile devices continuing to proliferate, but also en-
ergy efficiency has become increasingly important even
with desktop computers and other fixed-location de-
vices. There are both economic and ecological reasons
behind this trend, and it is unlikely to significantly de-
crease in importance anytime soon—just the opposite is
likely. So it behooves wireless LAN devices to be good
citizens regarding power usage.

4.1.1 Suspend and Resume

Drivers receive notifications of suspend and resume
events from the core kernel. Drivers are expected to save
or restore the state of their associated hardware as appro-
priate for the specific notification. This approach suf-
fices for the vast majority of LAN adapters. Since “full
MAC” devices implement the connection management
functionality themselves, this approach should work for
those devices as well.

In the case of mac80211-based devices, the actual
hardware driver does not implement the connection
management functionality. Since the wireless LAN en-
vironment may change radically between when a device
is suspended and when it is resumed, there is no way
for a mac80211-based driver to reliably resume opera-
tional state by itself after a suspend.

Unfortunately, the mac80211 component is currently
completely unaware of suspend and resume events.
Drivers work around this by unregistering themselves
from mac80211 upon suspend and re-registering them-
selves upon resume. This method works reasonably well
in many circumstances, but it is unreliable and it tends
to increase the wait required after a resume before the
wireless interface is again usable. The mac80211 com-
ponent needs to be aware of suspend and resume events
and it needs to handle them appropriately without forc-
ing driver work-arounds.



2008 Linux Symposium, Volume Two • 45

4.1.2 Power Saving Mode

The 802.11 specification includes a mechanism for a de-
vice in infrastructure mode to notify its associated ac-
cess point that it is entering power-saving mode. The
access point then queues frames intended for the power-
saving station. Periodically the station returns to full
power state long enough to ask the access point if it is
holding traffic for the station, and to accept delivery of
any such traffic. This can enable a device to save a great
deal of power if it is not actively transmitting traffic.

The mac80211 component currently makes no use of
this mechanism. The potential for power savings makes
this seem like a “must have” feature. On the other hand,
implementing it may not be as simple as it sounds. Still,
this would be a welcome addition to the mac80211 fea-
ture set.

4.2 NAPI Interrupt Mitigation

NAPI is a mechanism used by network drivers to miti-
gate the costs of processing interrupts on a busy network
link. The basic idea is to disable interrupts after the first
one and schedule a polling routing to keep processing
incoming frames. In that way, the kernel only incurs the
cost of the first interrupt in a burst of traffic rather than
processing interrupts for individual frames.

Originally, NAPI implicitly assumed that a given inter-
rupt source was associated with a single network in-
terface. Because the mac80211 component supports
multiple kernel network interfaces on a single physical
wireless interface, mac80211 drivers were implicitly
excluded from using NAPI. This has not been a huge
problem, because the transfer speeds used on wireless
networks has been relatively slow. However, 802.11n
is bringing much faster speeds to wireless LANs. For-
tunately, NAPI has been changed to disassociate in-
terrupt sources from specific network interfaces. The
mac80211 component should take advantage of NAPI
in order to maximize wireless LAN performance.

5 Other issues

Perhaps more than any other section of the kernel, wire-
less LAN support is held hostage to non-technical con-
cerns. Coping with these legal and political issues is key
to maintaining and improving good support for wireless
LANs in the Linux kernel.

5.1 Firmware Licensing

Wireless LAN protocols have stringent timing require-
ments for a number of operations. Consequently,
many adapters have an embedded microcontroller with
firmware to handle a variety of operations. This is true
even for many “soft MAC” designs, even though they
rely on the host processor for most higher-level opera-
tions. These devices simply do not work without their
required firmware.

In the Windows and OSX worlds, drivers typically in-
clude the firmware as data embedded in the driver bi-
naries. In most cases developers have learned how to
separate the firmware from those binaries so that they
can be loaded by Linux drivers as well. Unfortunately,
the copyright status of the resulting firmware images is
at best uncertain.

Many vendors have provided liberal licenses for their
firmware images which allow those images to be freely
distributed for use with Linux drivers. Intel and Ralink
are two examples of good citizens in this regard. Other
vendors have proven unwilling to cooperate on this is-
sue, with Broadcom as the most clear example of an
uncooperative vendor. Making wireless LAN hardware
purchasing decisions in support of cooperative vendors
is advised as the best approach to resolving this issue.

5.2 Vendor Participation

Many vendors have proven unwilling to provide either
support or programming documentation for their wire-
less LAN devices. This is true even for vendors like
Broadcom who have grown accustomed to providing
such support for their wired LAN devices. Some ven-
dors cite the spectre of governmental regulation as a
reason they cannot participate in the creation of open
source drivers. Other vendors (such as Realtek) find
ways to provide community developers with informa-
tion and still others (particularly Intel) provide devel-
opers dedicated to the cause. Unfortunately, too many
vendors continue to depend on support from reverse en-
gineers and unsupported community developers. Again,
economic pressure is advised as the best approach to re-
solving this situation.

5.3 Regulatory Issues

As noted above, vendors often cite the spectre of gov-
ernmental regualtors as a reason to provide poor support



46 • Tux on the Air: The State of Linux Wireless Networking

for Linux or no support for Linux at all. Unfortunately,
these fears are not altogether unfounded. The regula-
tions governing wireless LAN communications are de-
termined by geographical location and political realities.
There are literally dozens or even hundreds of differ-
ent regulatory jurisdictions covering the planet. Each
of these jurisdictions can have its own set of rules about
which channels are available, what practices (e.g., active
scanning) are acceptable on each channel, what power
output is acceptable on each channel, whether the rules
differ between indoor and outdoor operation, and many
other variables.

Complying with all these regulations can be trouble-
some at best. Add to that the fact that failure to ensure
compliance with local regulations can result in local of-
ficials refusing to let a vendor conduct business in their
jurisdiction. One can understand how a vendor may be
hesitant to embrace the loss of total control over their
products. Still, some vendors have found ways to over-
come these fears. Once again, economic pressure is ad-
vised to persuade hesitant vendors to find ways to satisfy
regulators while supporting open source drivers, as well
as to reward those vendors which have already done just
that.

6 Conclusion

Hopefully it is clear to the reader that a great deal of
progress has been made for Linux in the wireless LAN
arena over the past few years. Not so long ago Linux
was a wireless LAN ghetto, with only a few devices
working reliably enough for general use. Now most con-
sumer devices are either already supported, or support
already exists for a similar device, with reverse engi-
neering efforts continuing in hope of supporting new de-
vice versions. Better still, we now see a number of wire-
less LAN vendors offering some form of Linux support
even if that is only providing liberal licensing terms for
device firmware. Also, development of fixes and new
features continues to make Linux wireless LAN even
better. Wireless LAN is no longer the biggest problem
for Linux.


