Proceedings of the
Linux Symposium

Volume Two

July 19th—-22nd, 2006
Ottawa, Ontario
Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM

Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation

C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Automatic System for Linux Kernel Performance
Testing

Alexander Ufimtsev
University College Dublin

alexu@ucd.ie

Abstract

We introduce an automatic and open kernel
testing system. We argue that only by open-
ing a test system to the community and ag-
gregating the results from a variety of sources
can one get a comprehensive picture of the ker-
nel’s performance status. Our system can also
help identifying problems with specific parts of
code whether it is a device driver, some other
module, or platform-specific code. Design of
both client and server parts of the system is de-
scribed. Since the system is open, specific em-
phasis in the client part is placed on success-
ful automation and configuration of the test-
ing process. The emphasis of the server part
is placed on regression detection and acciden-
tal/malicious input elimination. Current imple-
mentation status is presented.

1 Introduction

Testing is an integral part of any quality soft-
ware development process. Some software
development practices even dictate the neces-
sity of writing tests prior to writing an actual
method, function, or process for it. However,
some of the extra functional requirements can

Liam Murphy
University College Dublin
Liam.Murphy@ucd.ie

only be checked during integration or even sys-
tem testing. Performance is one of the ex-
tra functional requirements that is difficult to
check outside of a proper testing environment.
Automating system performance tests require a
lot of provision and foresight from the authors,
taking into account all unusual and unpredicted
situations that might happen during the tests.
Watchdogs and exception handling are required
for specific benchmarks, buggy code, crashes,
file corruption—a lot of things might go wrong
when working with unstable code. The mat-
ter becomes even more difficult when trying to
do performance testing of the kernel. Since
the kernel is not a process that can simply be
killed and restarted, but rather a host to the pro-
cesses itself, the ability to handle test excep-
tions gracefully is quite limited. Of course, it is
possible to use virtualization methods, such as
User-mode Linux [1], VMware [3], or Xen [2]
to improve control over the whole test process.
However, the performance results obtained us-
ing virtualization are not authentic for the ac-
tual hardware, but rather for the specific virtu-
alization kernel is tested with. Comprehensive
automatic kernel tests help to prevent instability
issues and performance regressions, while lack
thereof is considered to be a significant contrib-
utor to the kernel quality problem.



412 e Automatic System for Linux Kernel Performance Testing

2 Related Work

Two of the most well-known projects dealing
with Linux kernel performance are Automatic
test system by Bligh [4] and Linux Kernel Per-
formance project by Chen et al. [5]. The for-
mer is a widely publicized automated system
that performs a variety of tests on a number
of high-end machines with a smaller set of test
tools. The latter is a less known (semi-) auto-
mated system that utilizes fewer hardware re-
sources but provides a more comprehensive set
of benchmarks. Other related work includes
kerncomp [6] and Open Source Development
Lab’s Linux Stabilization and Linux Testing [7]
and Linux 2.6 Compile Statistics [8]. Most
of the kernel testing statistics are from avail-
able “big iron” machines. Though undoubt-
edly useful, the test results produced by these
projects are quite unrepresentative, since they
tend to test kernel performance on very specific
hardware with very specific configurations. As
authors note themselves, “[p]erformance tests
and ratings are measured using specific com-
puter systems and/or hardware and software
components and reflect the approximate per-
formance of these components as measured by
those tests.” [5]

3 Proposed Solution

The Linux kernel can run on all kinds of plat-
forms supporting a variety of hardware, and has
a huge number of configurable parameters. We
argue that community involvement is necessary
to get a comprehensive picture of kernel perfor-
mance the same way kernel is being developed
itself. By analyzing test data performed on var-
ious types of hardware with statistical and data-
mining methods, it is possible to construct a
detailed picture of kernel behavior on different
computer architectures, configurations, and de-
vices.

3.1 System Requirements

The goal of our project is an extensible
and easy-to-use automatic testing system that
downloads, compiles, installs, and runs perfor-
mance tests of kernel branch snapshots. The re-
sulting data are sent to a server and then made
available to developers via a web interface. If a
regression is found, our system can pinpoint the
problem down to specific architecture, device
driver, submitter, and theoretically, the specific
configuration that causes it.

The following features were identified as essen-
tial for this open and community-driven testing
system:

e Security — system should be secure. We
need to be able to identify and isolate er-
roneous and malicious input so the over-
all results are not affected. Therefore re-
quired user registration needs to be en-
forced for use of the system.

e Simplicity — system should be as simple as
possible to appeal to a wider range of au-
dience. Ease of installation and configura-
tion, ease of result interpretation.

e Compatibility — system should be able to
run in a similar fashion on a variety of ar-
chitectures.

e Extendability — system should be config-
urable and extendable to be able to include
more tests, test different kernel branches,
be able to send data to various servers, if
necessary.

e Stability — system should try to recover
from various errors during testing and be
able to avoid them, if necessary.

e Speed — developers and testers should not
wait too long before they can see the re-
sults.



2006 Linux Symposium, Volume Two e 413

3.2 Architecture Overview

The high-level overview of the system is pre-
sented in Figure 1. Multiple client machines
that run on various hardware perform tests sub-
mit the results to the submission management
module of the server. Results are processed and
stored in a database backend. Analysis and Pre-
sentation module processes data and makes the
information available to the developers. The

Client Part | Server Part of the Test System

>
DB

Submission
I—»| Management
> Module

Developer —» | Analysis &
— | Presentation
I B Module

Figure 1: High-level system overview

following sections discuss the architecture of
client and server.

4 Client Architecture

Client architecture is presented in Figure 2. In-
stallation of the kernel image takes place after
successful compilation. Current implementa-
tion of the system does not support modules
and requires a single monolithic kernel that is
installed as a single file. After booting, the
system gives an administrator a chance to in-
tervene and interrupt the tests within a certain
time before the tests actually start. After test
runs the results are parsed, signed with a key
that tester obtained from the server, and sent to
that server. Once the results are sent, the client
updates repositories and looks for changes. If
no changes are introduced to the tested reposi-
tories, the computer waits a certain amount of
time and tries to update again. Otherwise the
branch selection decision is made based on the

updated source, amounts and dates of previ-
ous tests, and whether tests failed or succeeded.
Upon successful compilation, the kernel is in-
stalled and booted into, otherwise it waits and
updates the repositories again. As an alterna-

» Install image

!

Boot - ‘

|

i

. !
Run Tests }

v

Parse, Sign & i
Send Results |
i
|

v

A

Update Reps

Select Branch

'

Compile

Y

Yes No
Compiled

Figure 2: Client Logic

tive to pure waiting before attempting to up-
date the repositories again, the system could
perform other tests using the same source code
and kernel to determine current results/stability.
The behavior depends on the number of source
trees for testing configured in the test client and
the frequency of their updates.

4.1 Tests

To be compatible with the majority of architec-
tures, we plan to use available standard bench-
marking tools. Martin [9] provides a good
overview of the available tools. The tests were
separated into “mini” and “standard” packages.
The “mini” package needs to be used on ma-
chines with limited resources, where gcc is



414 e Automatic System for Linux Kernel Performance Testing

not available. ‘“Standard” also contains tools
that require use of gcc for proper functional-
ity. Both “mini” and “standard” sets are easily
extendable and customizable, if necessary.

Long Tests vs. Short Tests. On one hand, de-
velopers would like to know about the test re-
sults as soon as possible. On another hand, tests
are useless if they do not provide certain accu-
racy. Long tests are randomly introduced to the
system to check the validity of the short tests.
Approximately every 10-15 runs, instead of a
short run, the system is going to perform a long
run, using longer startup, cooldown, and mea-
sure time parameters for different tests.

Watchdogs. Watchdogs are essential for stable
functionality of the tests. Quite a few tests can
misbehave when working on a non-stable ker-
nel. Lockups or race conditions, segmentation
faults or file corruptions—watchdogs should
try every possible way to recover the tests and
continue. Currently we can prevent lockups of
the test processes and secure deletion of the
temporary files due to abnormal program ter-
minations. It is not possible for now to recover
from kernel panic, for instance. See Section 6
for more information.

4.2 Snapshot Selection

Selection of a snapshot for subsequent compila-
tion and testing depends on a number of things.
First, a user can select the kernel branches that
he or she is interested in testing. By default
each branch has an equal priority, which can
be changed at configuration time. Other fac-
tors that also affect the choice are the number of
previously performed compilations, their over-
all success rate, and date and time of the last
compilation attempt.

5 Server Architecture

The centralized server software manages data
submissions, data aggregation, and results pre-
sentation.

5.1 Data Submission Management

Server checks the signature of the sent dataset
to determine whether it should be accepted or
rejected. Unsigned submissions are accepted
by default, but this policy can be reconfigured
by server admins. The following information is
sent by clients to a server by default:

e test results

.configfile

snapshot of /proc

mount output

gcc version (for standard tests)

glibc version

All this information, except for the test results
is only sent to the server if allowed by admins
to do so and changed from a previous run due
to configuration or software and hardware up-
grade. It is used for datamining and problem lo-
calization as explained in the Section 5.2. Other
information can be added, if necessary.

5.2 Data Analysis and Aggregation

Data analysis is performed for filtering out
faulty or erroneous data and for regression de-
tection. Since the amount of available hardware
and software options is too great, we are mostly
interested in deltas (A), not the absolute num-
bers. Below is an algorithm used for data anal-
ysis.



2006 Linux Symposium, Volume Two e 415

1. Calculate personal cut-off average (avg)
A, personal sliding avg A. This is a neces-
sary part of the calculation. We work with
deltas since absolute numbers are almost
useless due to variety of hardware the tests
run on.

2. Compare them to common cut-off avg A
and sliding avg A. If there is no signif-
icant difference, update common. Go to
END. Now we know that there is proba-
bly no problem with the current build. It
is not interesting, so we finish analysis.
Otherwise—keep going.

3. Compare the results to the rest of the
similar parameters mentioned in the Sec-
tion 5.1. 1If there is a number of results
submitted already that deviate from the av-
erage results and some of the parameters
are common, we localize our search and
mark these parameters for further inspec-
tion. If no similar configurations show the
same type of deviation, we mark results as
suspicious for further analysis.

4. We inspect the submissions to the source
tree at this update to see any similari-
ties between localized potential problems
and patches submitted to that area of the
source tree. If there are any matches, there
is a high probability that those changes
introduced a detected regression (or im-
provement, for that matter). Report our
findings.

5.3 Results Presentation

Once newly arrived data are analyzed, the pre-
sentation module updates the result pages. The
summary page contains all the important devel-
opment for the projects and highlights possi-
ble problems. The rest of the statistics are also
available.

6 Potential Problems

There are a number of potential problems that
currently do not have a solution. First, run-
ning a development version of the kernel, com-
piling and booting into that kernel creates an
instability point in the system. There is little
that can be done for majority of architectures
if kernel panics during the boot or during the
tests. Some hardware allows a computer to be
rebooted remotely; the others require human
intervention. Hardware watchdogs can help to
solve this problem, though. And even if a sys-
tem is restarted automatically, it needs to be
able to boot into a safe and stable kernel instead
of the buggy one. This would require modifi-
cation of the bootloader for majority of archi-
tectures. And even if the safe kernel is chosen,
there is always a possibility that tests running in
the unstable kernel have corrupted the filesys-
tem.

Another major concern is an accuracy of the
tests. Aggregating a huge amount of data, some
of which might be malicious, is a tedious task.
Also, the system needs to be very precise in
order to be useful. Even 99% accuracy is not
enough since the remaining 1% of false posi-
tives would create a frustration with users that
would at some point just stop using the system.

7 Current Status and Future Work

Currently the system is being implemented
with clients up and running on three architec-
tures: x86, alpha, and ppc. Preliminary result
aggregation of the results is also implemented
on the server side of the test suite. We are look-
ing into ways of solving open questions men-
tioned in Section 6. One of the possible ways
of battling file system corruption is a way sug-
gested by Instalinux [10] through creation of a



416 e Automatic System for Linux Kernel Performance Testing

customized bootable CD while the current sys-
tem state is stored on the server in members
profile.

Since the system is now in the active devel-
opment stage, we plan to introduce more fea-
tures into it and make its presentation (as well
as open it to the community) during the presen-
tation.

8 Conclusion

The design and current implementation status
of an automatic system for Linux kernel test-
ing was presented. Both client and server parts
of the system were discussed, processing algo-
rithms mentioned. Potential problems and pos-
sible ways of solutions were also addressed.

The advantage of this system over already ex-
isting ones is that the system allows developers
to have a coherent view on kernel performance.
The accepted results come from various hard-
ware architectures and software configurations
with the help of the Linux community.

9 Acknowledgment

Authors would like to thank Valentin Chulkov
and Niamh Mahon of UCD for their help with
the project.

References

[1] User-mode Linux.
http://user-mode-linux.
sourceforge.net. (2006)

[2] XenSource.
http://www.xensource.com.

(2006)

[3] VMware. http://www.vmware.com
(2006)

[4] M.J. Bligh. Automated Linux Testing.
http://test.kernel.org. (2006)

[5] Chen, K. and Chen, T. The Linux Kernel
Performance Project. http://
kernel-perf.sourceforge.net.

[6] Wienand, I. and Williams, D. Tools for
Automated Regression Testing of the
Linux kernel kerncomp.sourceforge.net
(2006)

[7] Open Source Development Labs. Linux
Stabilization and Linux Testing.
http://osdl.org/projects/
261lnxstblztn/results. (2006)

[8] Open Source Development Labs. Linux
2.6 Compile Statistics.
http://developer.osdl.org/
cherry/compile (2006)

[9] J. Martin. Linux Test Tools.
http://ltp.sourceforge.net/
tooltable.php (2006)

[10] Instalinux.
http://www.instalinux.com.



