
Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

ACPI in Linux
Architecture, Advances, and Challenges

Len Brown Anil Keshavamurthy David Shaohua Li

Robert Moore Venkatesh Pallipadi Luming Yu

Intel Open Source Technology Center
{len.brown, anil.s.keshavamurthy, shaohua.li}@intel.com

{robert.moore, venkatesh.pallipadi, luming.yu}@intel.com

Abstract

ACPI (Advanced Configuration and Power In-
terface) is an open industry specification es-
tablishing industry-standard interfaces for OS-
directed configuration and power management
on laptops, desktops, and servers.

ACPI enables new power management technol-
ogy to evolve independently in operating sys-
tems and hardware while ensuring that they
continue to work together.

This paper starts with an overview of the
ACPICA architecture. Next a section describes
the implementation architecture in Linux.

Later sections detail recent advances and cur-
rent challenges in Linux/ACPI processor power
management, CPU and memory hot-plug,
legacy plug-and-play configuration, and hot-
keys.

1 ACPI Component Architecture

The purpose of ACPICA, the ACPI Component
Architecture, is to simplify ACPI implementa-
tions for operating system vendors (OSVs) by

providing major portions of an ACPI imple-
mentation in OS-independent ACPI modules
that can be integrated into any operating sys-
tem.

The ACPICA software can be hosted on any
operating system by writing a small and rel-
atively simple OS Services Layer (OSL) be-
tween the ACPI subsystem and the host oper-
ating system.

The ACPICA source code is dual-licensed such
that Linux can share it with other operating sys-
tems, such as FreeBSD.

1.1 ACPICA Overview

ACPICA defines and implements a group of
software components that together create an
implementation of the ACPI specification. A
major goal of the architecture is to isolate all
operating system dependencies to a relatively
small translation or conversion layer (the OS
Services Layer) so that the bulk of the ACPICA
code is independent of any individual operat-
ing system. Therefore, hosting the ACPICA
code on new operating systems requires no
source code modifications within the CA code

• 51 •

52 • ACPI in Linux

itself. The components of the architecture in-
clude (from the top down):

• A user interface to the power management
and configuration features.

• A power management and power policy
component (OSPM).1

• A configuration management component.

• ACPI-related device drivers (for example,
drivers for the Embedded Controller, SM-
Bus, Smart Battery, and Control Method
Battery).

• An ACPI Core Subsystem component that
provides the fundamental ACPI services
(such as the AML2 interpreter and names-
pace3 management).

• An OS Services Layer for each host oper-
ating system.

1.2 The ACPI Subsystem

The ACPI Subsystem implements the low level
or fundamental aspects of the ACPI specifica-
tion. It includes an AML parser/interpreter,
ACPI namespace management, ACPI table and
device support, and event handling. Since the
ACPICA core provides low-level system ser-
vices, it also requires low-level operating sys-
tem services such as memory management,
synchronization, scheduling, and I/O. To allow
the Core Subsystem to easily interface to any
operating system that provides such services,
the OSL translates OS requests into the native
calls provided by the host operating system.

1OSPM, Operating System directed Power Manage-
ment.

2AML, ACPI Machine Language exported by the
BIOS in ACPI tables, interpreted by the OS.

3The ACPI namespace tracks devices, objects, and
methods accessed by the interpreter.

Operating System

ACPI Core Subsystem

OS Services Layer

ACPI Subsystem

Figure 1: The ACPI Subsystem Architecture

The OS Services Layer is the only component
of the ACPICA that contains code that is spe-
cific to a host operating system. Figure 1 illus-
trates the ACPI Subsystem is composed of the
OSL and the Core.

The ACPI Core Subsystem supplies the ma-
jor building blocks or subcomponents that are
required for all ACPI implementations includ-
ing an AML interpreter, a namespace man-
ager, ACPI event and resource management,
and ACPI hardware support.

One of the goals of the Core Subsystem is to
provide an abstraction level high enough such
that the host OS does not need to understand
or know about the very low-level ACPI details.
For example, all AML code is hidden from the
OSL and host operating system. Also, the de-
tails of the ACPI hardware are abstracted to
higher-level software interfaces.

The Core Subsystem implementation makes no
assumptions about the host operating system
or environment. The only way it can request

2005 Linux Symposium • 53

Host Operating System

OS Services
Layer

Core Subsystem

Host/OS
Interface

ACPI/OS
Interface

ACPI Interface

ACPI Subsystem

Figure 2: Interaction between the Architectural
Components

operating system services is via interfaces pro-
vided by the OSL. Figure 2 shows that the OSL
component “calls up” to the host operating sys-
tem whenever operating system services are re-
quired, either for the OSL itself, or on behalf
of the Core Subsystem component. All native
calls directly to the host are confined to the OS
Services Layer, allowing the core to remain OS
independent.

1.3 ACPI Core Subsystem

The Core Subsystem is divided into several log-
ical modules or sub-components. Each mod-
ule implements a service or group of related
services. This section describes each sub-
component and identifies the classes of external
interfaces to the components, the mapping of
these classes to the individual components, and
the interface names. Figure 3 shows the inter-
nal modules of the ACPI Core Subsystem and
their relationship to each other. The AML inter-
preter forms the foundation of the component,
with additional services built upon this founda-
tion.

AML Interpreter

Event
Management

ACPI H/W
Management

ACPI Table
Management

Namespace
Management

Resource
Management

Figure 3: Internal Modules of the ACPI Core
Subsystem

1.4 AML Interpreter

The AML interpreter is responsible for the
parsing and execution of the AML byte code
that is provided by the computer system ven-
dor. The services that the interpreter provides
include:

• AML Control Method Execution

• Evaluation of Namespace Objects

1.5 ACPI Table Management

This component manages the ACPI tables. The
tables may be loaded from the firmware or di-
rectly from a buffer provided by the host oper-
ating system. Services include:

• ACPI Table Parsing

• ACPI Table Verification

• ACPI Table installation and removal

1.6 Namespace Management

The Namespace component provides ACPI
namespace services on top of the AML inter-
preter. It builds and manages the internal ACPI
namespace. Services include:

54 • ACPI in Linux

• Namespace Initialization from either the
BIOS or a file

• Device Enumeration

• Namespace Access

• Access to ACPI data and tables

1.7 Resource Management

The Resource component provides resource
query and configuration services on top of the
Namespace manager and AML interpreter. Ser-
vices include:

• Getting and Setting Current Resources

• Getting Possible Resources

• Getting IRQ Routing Tables

• Getting Power Dependencies

1.8 ACPI Hardware Management

The hardware manager controls access to the
ACPI registers, timers, and other ACPI–related
hardware. Services include:

• ACPI Status register and Enable register
access

• ACPI Register access (generic read and
write)

• Power Management Timer access

• Legacy Mode support

• Global Lock support

• Sleep Transitions support (S-states)

• Processor Power State support (C-states)

• Other hardware integration: Throttling,
Processor Performance, etc.

1.9 Event Handling

The Event Handling component manages the
ACPI System Control Interrupt (SCI). The sin-
gle SCI multiplexes the ACPI timer, Fixed
Events, and General Purpose Events (GPEs).
This component also manages dispatch of no-
tification and Address Space/Operation Region
events. Services include:

• ACPI mode enable/disable

• ACPI event enable/disable

• Fixed Event Handlers (Installation, re-
moval, and dispatch)

• General Purpose Event (GPE) Handlers
(Installation, removal, and dispatch)

• Notify Handlers (Installation, removal,
and dispatch)

• Address Space and Operation Region
Handlers (Installation, removal, and dis-
patch)

2 ACPICA OS Services Layer
(OSL)

The OS Services Layer component of the archi-
tecture enables the re-hosting or re-targeting of
the other components to execute under different
operating systems, or to even execute in envi-
ronments where there is no host operating sys-
tem. In other words, the OSL component pro-
vides the glue that joins the other components
to a particular operating system and/or environ-
ment. The OSL implements interfaces and ser-
vices using native calls to host OS. Therefore,
an OS Services Layer must be written for each
target operating system.

The OS Services Layer has several roles.

2005 Linux Symposium • 55

1. It acts as the front-end for some OS-to-
ACPI requests. It translates OS requests
that are received in the native OS format
(such as a system call interface, an I/O re-
quest/result segment interface, or a device
driver interface) into calls to Core Subsys-
tem interfaces.

2. It exposes a set of OS-specific application
interfaces. These interfaces translate ap-
plication requests to calls to the ACPI in-
terfaces.

3. The OSL component implements a stan-
dard set of interfaces that perform OS de-
pendent functions (such as memory allo-
cation and hardware access) on behalf of
the Core Subsystem component. These
interfaces are themselves OS-independent
because they are constant across all OSL
implementations. It is the implemen-
tations of these interfaces that are OS-
dependent, because they must use the na-
tive services and interfaces of the host op-
erating system.

2.1 Functional Service Groups

The services provided by the OS Services
Layer can be categorized into several distinct
groups, mostly based upon when each of the
services in the group are required. There are
boot time functions, device load time functions,
run time functions, and asynchronous func-
tions.

Although it is the OS Services Layer that ex-
poses these services to the rest of the operat-
ing system, it is very important to note that the
OS Services Layer makes use of the services of
the lower-level ACPI Core Subsystem to imple-
ment its services.

2.1.1 OS Boot-load-Time Services

Boot services are those functions that must be
executed very early in the OS load process, be-
fore most of the rest of the OS initializes. These
services include the ACPI subsystem initializa-
tion, ACPI hardware initialization, and execu-
tion of the _INI control methods for various de-
vices within the ACPI namespace.

2.1.2 Device Driver Load-Time Services

For the devices that appear in the ACPI names-
pace, the operating system must have a mecha-
nism to detect them and load device drivers for
them. The Device driver load services provide
this mechanism. The ACPI subsystem provides
services to assist with device and bus enumer-
ation, resource detection, and setting device re-
sources.

2.1.3 OS Run-Time Services

The runtime services include most if not all of
the external interfaces to the ACPI subsystem.
These services also include event logging and
power management functions.

2.1.4 Asynchronous Services

The asynchronous functions include interrupt
servicing (System Control Interrupt), Event
handling and dispatch (Fixed events, General
Purpose Events, Notification events, and Oper-
ation Region access events), and error handling.

2.2 OSL Required Functionality

There are three basic functions of the OS Ser-
vices Layer:

56 • ACPI in Linux

Host Operating System

ACPI Core Subsystem

ACPI Subsystem

OS Services Layer

Requests To Host OS

Figure 4: ACPI Subsystem to Operating Sys-
tem Request Flow

1. Manage the initialization of the entire
ACPI subsystem, including both the OSL
and ACPI Core Subsystems.

2. Translate requests for ACPI services from
the host operating system (and its appli-
cations) into calls to the Core Subsystem
component. This is not necessarily a one-
to-one mapping. Very often, a single op-
erating system request may be translated
into many calls into the ACPI Core Sub-
system.

3. Implement an interface layer that the Core
Subsystem component uses to obtain op-
erating system services. These standard
interfaces (referred to in this document as
the ACPI OS interfaces) include functions
such as memory management and thread
scheduling, and must be implemented us-
ing the available services of the host oper-
ating system.

2.2.1 Requests from ACPI Subsystem to
OS

The ACPI subsystem requests OS services via
the OSL shown in Figure 4. These requests
must be serviced (and therefore implemented)
in a manner that is appropriate to the host oper-
ating system. These requests include calls for
OS dependent functions such as I/O, resource
allocation, error logging, and user interaction.
The ACPI Component Architecture defines in-
terfaces to the OS Services Layer for this pur-
pose. These interfaces are constant (i.e., they
are OS-independent), but they must be imple-
mented uniquely for each target OS.

2.3 ACPICA—more details

The ACPICA APIs are documented in de-
tail in the ACPICA Component Architecture
Programmer Referenceavailable onhttp://
www.intel.com .

The ACPI header files inlinux/include/

acpi/ can also be used as a reference, as can
the ACPICA source code in the directories un-
der linux/drivers/acpi/ .

3 ACPI in Linux

The ACPI specification describes platform reg-
isters, ACPI tables, and operation of the ACPI
BIOS. It also specifies AML (ACPI Machine
Language), which the BIOS exports via ACPI
tables to abstract the hardware. AML is exe-
cuted by an interpreter in the ACPI OS.4

In some cases the ACPI specification describes
the sequence of operations required by the

4ACPI OS: an ACPI-enabled OS, such as Linux.

2005 Linux Symposium • 57

ACPI
Tables

Platform BIOS,
Firmware

Platform
Hardware

ACPI
Registers

ACPI
BIOS

ACPICA Core

Linux/ACPI

acpid

/proc/acpi

User

Kernel

OSL

Button

Processor

Battery

AC

Thermal Fan

ACPI Specification

Platform Defined

Figure 5: Implementation Architecture

ACPI OS—but generally the OS implementa-
tion is left as an exercise to the reader.

There is no platform ACPI compliance test to
assure that platforms and platform BIOS’ are
compliant to the ACPI specification. System
manufacturers assume compliance when avail-
able ACPI-enabled operating systems boot and
function properly on their systems.

Figure 5 shows these ACPI components log-
ically as a layer above the platform specific
hardware and firmware.

The ACPI kernel support centers around the
ACPICA core. ACPICA implements the AML
interpreter as well as other OS-agnostic parts
of the ACPI specification. The ACPICA code
does not implement any policy, that is the realm
of the Linux-specific code. A single file,osl.
c , glues ACPICA to the Linux-specific func-
tions it requires.

The box in Figure 5 labeled “Linux/ACPI” rep-

resents the Linux-specific ACPI code, includ-
ing boot-time configuration.

Optional “ACPI drivers,” such as Button, Bat-
tery, Processor, etc. are (optionally loadable)
modules that implement policy related to those
specific features and devices.

There are about 200 ACPI-related files in the
Linux kernel source tree—about 130 of them
are from ACPICA, and the rest are specific to
Linux.

4 Processor Power management

Processor power management is a key ingre-
dient in system power management. Manag-
ing processor speed and voltage based on uti-
lization is effective in increasing battery life
on laptops, reducing fan noise on desktops,
and lowing power and cooling costs on servers.
This section covers recent and upcoming Linux
changes related to Processor Power Manage-
ment.

4.1 Overview of Processor Power States

But first refer to Figure 6 for this overview of
processor power management states.

1. G0—System Working State. Processor
power management states have meaning
only in the context of a running system—
not when the system is in one of its various
sleep or off-states.

2. Processor C-state: C0 is the executing
CPU power state. C1–Cn are idle CPU
power states used by the Linux idle loop;
no instructions are executed in C1–Cn.
The deeper the C-state, the more power is
saved, but at the cost of higher latency to
enter and exit the C-state.

58 • ACPI in Linux

G0 (S0)
Working

G1 - Sleeping

C1 -
idle

C0 - Execute

C3 -
idle

C2 -
idle

Throttling

P-states

S1 - Standby

S4 -
Hibernate

S3 - Suspend

G2 (S5) –
Soft off

G3 – Mech off

Legacy

Figure 6: ACPI Global, CPU, and Sleep states

3. Processor P-state: Performance states con-
sist of states representing different proces-
sor frequencies and voltages. This pro-
vides an opportunity to OS to dynamically
change the CPU frequency to match the
CPU workload.

As power varies with the square of volt-
age, the voltage-lowing aspect of p-states
is extremely effective at saving power.

4. Processor T-state: Throttle states change
the processor frequency only, leaving the
voltage unchanged.

As power varies directly with frequency,
T-states are less effective than P-states for
saving processor power. On a system with
both P-states and T-states, Linux uses T-
states only for thermal (emergency) throt-
tling.

4.2 Processor Power Saving Example

Table 1 illustrates that high-volume hardware
offers dramatic power saving opportunities to
the OS through these mechanisms.5 Note that
these numbers reflect processor power, and do
not include other system components, such as
the LCD chip-set, or disk drive. Note also that
on this particular model, the savings in the C1,
C2, and C3 states depend on the P-state the
processor was running in when it became idle.
This is because the P-states carry with them re-
duced voltage.

C-State P-State MHz Volts Watts

C0 P0 1600 1.484 24.5
P1 1300 1.388 22
P2 1100 1.180 12
P3 600 0.956 6

C1, C2 from P0 0 1.484 7.3
from P3 0 0.956 1.8

C3 from P0 0 1.484 5.1
from P3 0 0.956 1.1

C4 (any) 0 0.748 0.55

Table 1: C-State and P-State Processor Power

4.3 Recent Changes

4.3.1 P-state driver

The Linux kernel cpufreq infrastructure has
evolved a lot in past few years, becoming
a modular interface which can connect var-
ious vendor specific CPU frequency chang-
ing drivers and CPU frequency governors
which handle the policy part of CPU fre-
quency changes. Recently different vendors
have different technologies, that change the

5Ref: 1600MHz Pentium M processor Data-sheet.

2005 Linux Symposium • 59

CPU frequency and the CPU voltage, bring-
ing with it much higher power savings than
simple frequency changes used to bring before.
This combined with reduced CPU frequency-
changing latency (10uS–100uS) provides a op-
portunity for Linux to do more aggressive
power savings by doing a frequent CPU fre-
quency change and monitoring the CPU utiliza-
tion closely.

The P-state feature which was common
in laptops is now becoming common on
servers as well. acpi-cpufreq and
speedstep-centrino drivers have been
changed to support SMP systems. These
drivers can run with i386 and x86-64 kernel on
processors supporting Enhanced Intel Speed-
step Technology.

4.3.2 Ondemand governor

One of the major advantages that recent CPU
frequency changing technologies (like En-
hanced Intel SpeedStep Technology) brings is
lower latency associated with P-state changes
of the order of 10mS. In order to reap maximum
benefit, Linux must perform more-frequent P-
state transitions to match the current processor
utilization. Doing frequent transitions with a
user-level daemon will involve more kernel-to-
user transitions, as well as a substantial amount
of kernel-to-user data transfer. An in-kernel
P-state governor, which dynamically monitors
the CPU usage and makes P-state decisions
based on that information, takes full advantage
of low-latency P-state transitions. The onde-
mand policy governor is one such in-kernel P-
state governor. The basic algorithm employed
with the ondemand (as in Linux-2.6.11) gover-
nor is as follows:

Every X milliseconds
Get the current CPU utilization

If (utilization > UP_THRESHOLD %)
Increase the P-state
to the maximum frequency

Every Y milliseconds
Get the current CPU utilization
If (utilization < DOWN_THRESHOLD %)

Decrease P-state
to next available lower frequency

The ondemand governor, when supported by
the kernel, will be listed in the/sys interface
under scaling_available_governors .
Users can start using the ondemand governor
as the P-state policy governor by writing onto
scaling_governor :

cat scaling_available_governors
ondemand user-space performance
echo ondemand > scaling_governor
cat scaling_governor
ondemand

This sequence must be repeated on all the CPUs
present in the system. Once this is done, the
ondemand governor will take care of adjusting
the CPU frequency automatically, based on the
current CPU usage. CPU usage is based on
theidle_ticks statistics. Note: On systems
that do not support low latency P-state transi-
tions, scaling_governor will not change
to “ondemand” above. A single policy gover-
nor cannot satisfy all of the needs of applica-
tions in various usage scenarios, the ondemand
governor supports a number of tuning parame-
ters. More details about this can be found on
Intel’s web site.6

4.3.3 cpufreq stats

Another addition to cpufreq infrastructure
is the cpufreq stats interface. This interface

6Enhanced Intel Speedstep Technology for the Pen-
tium M Processor.

60 • ACPI in Linux

appears in /sys/devices/system/cpu/

cpuX/cpufreq/stats , whenever cpufreq is
active. This interface provides the statistics
about frequency of a particular CPU over time.
It provides

• Total number of P-state transitions on this
CPU.

• Amount of time (in jiffies) spent in each
P-state on this CPU.

• And a two-dimensional (n x n) matrix with
value count(i,j) indicating the number of
transitions from Pi to Pj.

• A top -like tool can be built over this in-
terface to show the system wide P-state
statistics.

4.3.4 C-states and SMP

Deeper C-states (C2 and higher) are mostly
used on laptops. And in today’s kernel, C-
states are only supported on UP systems. But,
soon laptop CPUs will be becoming Dual-Core.
That means we need to support C2 and higher
states on SMP systems as well. Support for C2
and above on SMP is in the base kernel now
ready for future generation of processors and
platforms.

4.4 Upcoming Changes

4.4.1 C4, C5, . . .

In future, one can expect more deeper C states
with higher latencies. But, with Linux kernel
jiffies running at 1mS, CPU may not stay long
enough in a C-state to justify entering C4, C5
states. This is where we can use the existing
variable HZ solution and can make use of more

deeper C-states. The idea is to reduce the rate
of timer interrupts (and local APIC interrupts)
when the CPU is idle. That way a CPU can stay
in a low power idle state longer when they are
idle.

4.4.2 ACPI 3.0 based Software coordina-
tion for P and C states

ACPI 3.0 supports having P-state and C-state
domains defined across CPUs. A domain will
include all the CPUs that share P-state and/or
C-state. Using these information from ACPI
and doing the software coordination of P-states
and C-states across their domains, OS can have
much more control over the actual P-states and
C-states and optimize the policies on systems
running with different configuration.

Consider for example a 2-CPU package sys-
tem, with 2 cores on each CPU. Assume the
two cores on the same package share the P-
states (means both cores in the same package
change the frequency at the same time). If
OS has this information, then if there are only
2 threads running, OS, can schedule them on
different cores of same package and move the
other package to lower P-state thereby saving
power without loosing significant performance.

This is a work in progress, to support software
coordination of P-states and C-states, whenever
CPUs share the corresponding P and C states.

5 ACPI support for CPU and Mem-
ory Hot-Plug

Platforms supporting physical hot-add and hot
remove of CPU/Memory devices are entering
the systems market. This section covers a va-
riety of recent changes that went into kernel

2005 Linux Symposium • 61

specifically to enable ACPI based platform to
support the CPU and Memory hot-plug tech-
nology.

5.1 ACPI-based Hot-Plug Introduction

The hot-plug implementation can be viewed as
two blocks, one implementing the ACPI spe-
cific portion of the hot-plug and the other non
ACPI specific portion of the hot-plug.

The non-ACPI specific portion of
CPU/Memory hot-plug, which is being
actively worked by the Linux community,
supports what is know as Logical hot-plug.
Logical hot-plug is just removing or adding the
device from the operating system perspective,
but physically the device still stays in the sys-
tem. In the CPU or Memory case, the device
can be made to disappear or appear from the
OS perspective by echoing either 0 or 1 to
the respective online file. Refer to respective
hot-plug paper to learn more about the logical
online/off-lining support of these devices.
The ACPI specific portion of the hot-plug is
what bridges the gap between the platforms
having the physical hot-plug capability to take
advantage of the logical hot-plug in the kernel
to provide true physical hot-plug. ACPI is
not involved in the logical part of on-lining or
off-lining the device.

5.2 ACPI Hot-Plug Architecture

At the module init time we search the ACPI de-
vice namespace. We register a system notify
handler callback on each of the interested de-
vices. In case of CPU hot-plug support we look
for ACPI_TYPE_PROCESSOR_DEVICEand in
case of Memory hot-plug support we look for

PNP0C80 HID7 and in case of container8 we
look for ACPI004 or PNP0A06 or PNP0A05
devices.

When a device is hot-plugged, the core chip-
set or the platform raises the SCI,9 the SCI
handler within the ACPI core clears the GPE
event and runs _Lxx10 method associated with
the GPE. This _Lxx method in turn executes
Notify(XXXX, 0) and notifies the ACPI core,
which in turn notifies the hot-plug modules
callback which was registered during the mod-
ule init time.

When the module gets notified, the module no-
tify callback handler looks for the event code
and takes appropriate action based on the event.
See the module Design section for more details.

5.3 ACPI Hot-Plug support Changes

The following enhancements were made to
support physical Memory and/or CPU device
hot-plug.

• A new acpi_memhotplug.c module
was introduced into the drives/acpi direc-
tory for memory hot-plug.

• The existing ACPI processor driver was
enhanced to support the ACPI hot-
plug notification for the physical inser-
tion/removal of the processor.

• A new container module was introduced
to support hot-plug notification on a ACPI

7HID, Hardware ID.
8A container device captures hardware dependencies,

such as a Processor and Memory sharing a single remov-
able board.

9SCI, ACPI’s System Control Interrupt, appears as
“acpi” in /proc/interrupts .

10_Lxx - L stands for level-sensitive, xx is the GPE
number, e.g. GPE 42 would use _L42 handler.

62 • ACPI in Linux

container device. The ACPI container de-
vice can contain multiple devices, includ-
ing another container device.

5.4 Memory module

A newacpi_memhotplug.c driver was in-
troduced which adds support for the ACPI
based Memory hot-plug. This driver pro-
vides support for fielding notifications on ACPI
memory device (PNP0C80) which represents
memory ranges that may be hot-added or hot
removed during run time. This driver is en-
abled by enablingCONFIG_ACPI_HOTPLUG_

MEMORYin the con fig file and is required on
ACPI platforms supporting physical Memory
hot plug of the Memory DIMMs (at some plat-
form granularity).

Design: The memory hot-plug module’s de-
vice notify callback gets called when the mem-
ory device is hot-plug plugged. This handler
checks for the event code and for hot-add case,
first checks the device for physical presence
and reads the memory range reported by the
_CRS method and tells the VM about the new
device. The VM which resides outside of ACPI
is responsible for actual addition of this range
to the running kernel. The ACPI memory hot-
plug module does not yet implement the hot-
remove case.

5.5 Processor module

The ACPI processor module can now support
physical CPU hot-plug by enablingCONFIG_

ACPI_HOTPLUG_CPUunder CONFIG_ACPI_

PROCESSOR.

Design: The processor hot-plug module’s de-
vice notify callback gets called when the pro-
cessor device is hot plugged. This handler

checks for the event code and for the hot-
add case, it first creates the ACPI device by
calling acpi_bus_add() andacpi_bus_
scan() and then notifies the user mode agent
by invoking kobject_hotplug() using
the kobj of the ACPI device that got hot-
plugged. The user mode agent in turn on-lines
the corresponding CPU devices by echoing on
to the online file. Theacpi_bus_add()
would invoke the.add method of the proces-
sor module which in turn sets up theapic_id
to logical_id required for logical online.

For the remove case, the notify callback han-
dler in turn notifies the event to the user mode
agent by invoking kobject_hotplug()
using the kobj of the ACPI device that got hot-
plugged. The user mode first off-lines the de-
vice and then echoes 1 on to the eject file un-
der the corresponding ACPI namespace device
file to remove the device physically. This ac-
tion leads to call into the kernel mode rou-
tine calledacpi_bus_trim() which in turn
calls the .remove method of the processor
driver which will tear the ACPI id to logical id
mappings and releases the ACPI device.

5.6 Container module

ACPI defines a Container device with the HID
being ACPI004 or PNP0A06 or PNP0A05.
This device can in turn contain other devices.
For example, a container device can contain
multiple CPU devices and/or multiple Memory
devices. On a platform which supports hotplug
notify on Container device, this driver needs
to be enabled in addition to the above device
specific hotplug drivers. This driver is enabled
by enablingCONFIG_ACPI_CONTAINERin the
config file.

Design: The module init is pretty much the
same as the other driver where in we regis-
ter for the system notify callback on to every

2005 Linux Symposium • 63

container device with in the ACPI root names-
pace scope. Thecontainer_notify_
cb() gets called when the container device
is hot-plugged. For the hot-add case it first
creates an ACPI device by callingacpi_
bus_add() andacpi_bus_scan() . The
acpi_bus_scan() which is a recursive call
in turns calls the.add method of the respec-
tive hotplug devices. When theacpi_bus_
scan() returns the container driver notifies
the user mode agent by invokingkobject_
hotplug() using kobj of the container de-
vice. The user mode agent is responsible to
bring the devices to online by echoing on to the
online file of each of those devices.

5.7 Future work

ACPI-based, NUMA-node hotplug support (al-
though there are a little here and there patches
to support this feature from different hardware
vendors). Memory hot-remove support and
handling physical hot-add of memory devices.
This should be done in a manner consistent
with the CPU hotplug—first kernel mode does
setup and notifies user mode, then user mode
brings the device on-line.

6 PNPACPI

The ACPI specification replaces the PnP BIOS
specification. As of this year, on a platform that
supports both specifications, the Linux PNP
ACPI code supersedes the Linux PNP BIOS
code. The ACPI compatible BIOS defines all
PNP devices in its ACPI DSDT.11 Every ACPI
PNP device defines a PNP ID, so the OS can
enumerate this kind of device through the PNP

11DSDT, Differentiated System Description Table, the
primary ACPI table containing AML

pnpacpi_get_resources()
pnpacpi_parse_allocated_resource() /* _CRS */

pnpacpi_disable_resources()
acpi_evaluate_object (_DIS) /* _DIS */

pnpacpi_set_resources()
pnpacpi_build_resource_template() /* _CRS */
pnpacpi_encode_resources() /* _PRS */
acpi_set_current_resources() /* _SRS */

Figure 7: ACPI PNP protocol callback routines

ID. ACPI PNP devices also define some meth-
ods for the OS to manipulate device resources.
These methods include _CRS (return current
resources), _PRS (return all possible resources)
and _SRS (set resources).

The generic Linux PNP layer abstracts
PNPBIOS and ISAPNP, and some drivers use
the interface. A natural thought to add ACPI
PNP support is to provide a PNPBIOS-like
driver to hook ACPI with PNP layer, which is
what the current PNPACPI driver does. Fig-
ure 7 shows three callback routines required for
PNP layer and their implementation overview.
In this way, existing PNP drivers transparently
support ACPI PNP. Currently there are still
some systems whose PNPACPI does not work,
such as the ES7000 system. Boot option
pnpacpi=off can disable PNPACPI.

Compared with PNPBIOS, PNPACPI does not
need to call into 16-bit BIOS. Rather it di-
rectly utilizes the ACPICA APIs, so it is faster
and more OS friendly. Furthermore, PNPACPI
works even under IA64. In the past on IA64,
ACPI-specific drivers such as 8250_acpi driver
were written. But since ACPI PNP works on
all platforms with ACPI enabled, existing PNP
drivers can work under IA64 now, and so the
specific ACPI drivers can be removed. We did
not remove all the drivers yet for the reason of
stabilization (PNPACPI driver must be widely
tested)

Another advantage of ACPI PNP is that it sup-

64 • ACPI in Linux

ports device hotplug. A PNP device can define
some methods (_DIS, _STA, _EJ0) to support
hotplug. The OS evaluates a device’s _STA
method to determine the device’s status. Every
time the device’s status changes, the device will
receive a notification. Then the OS registered
device notification handler can hot add/remove
the device. An example of PNP hotplug is a
docking station, which generally includes some
PNP devices and/or PCI devices.

In the initial implementation of ACPI PNP, we
register a default ACPI driver for all PNP de-
vices, and the driver will hook the ACPI PNP
device to PNP layer. With this implementation,
adding an ACPI PNP device will automatically
put the PNP device into Linux PNP layer, so the
driver is hot-pluggable. Unfortunately, the fea-
ture conflicted with some specific ACPI drivers
(such as 8250_acpi), so we removed it. We will
reintroduce the feature after the specific ACPI
drivers are removed.

7 Hot-Keys

Keys and buttons on ACPI-enabled systems
come in three flavors:

1. Keyboard keys, handled by the keyboard
driver/Linux input sub-system/X-window
system. Some platforms add additional
keys to the keyboard hardware, and the
input sub-system needs to be augmented
to understand them through utilities to
map scan-codes to characters, or though
model-specific keyboard drivers.

2. Power, Sleep, and Lid buttons. These
three buttons are fully described by the
ACPI specification. The kernel’s ACPI
button.c driver sends these events to user-
space via/proc/acpi/event . A user-
space utility such asacpid(8) is re-
sponsible for deciding what to do with

them. Typically shutdown is invoked on
power button events, and suspend is in-
voked for sleep or lid button events.

3. The “other” keys are generally called “hot-
keys,” and have icons on them describing
various functions such as display output
switching, LCD brightness control, WiFi
radio, audio volume control etc.

Hot-keys may be implemented in a variety of
ways, even within the same platform.

• Full BIOS control: Here hot-keys trigger
an SMI, and the SMM BIOS12 will handle
everything. Using this method, the hot-
key is invisible to the kernel—to the OS
they are effectively done “in hardware.”

The advantage is that the buttons will do
their functions successfully, even in the
presence of an ignorant or broken OS.

The disadvantage is that the OS is com-
pletely un-aware that these functions are
occurring and thus has no opportunity
to optimize its policies. Also, as the
SMI/SMM is shipped by the OEM in the
BIOS, users are unable to either fix it when
it is broken, or customize it in any way.

Some systems include this SMI-based hot-
key mechanism, but disable it when an
ACPI-enabled OS boots and puts the sys-
tem into ACPI-mode.

• Self-contained AML methods: from a
user’s—even a kernel programmer’s—
point of view, method is analogous to the
full-BIOS control method above. The OS
is is un-aware that the button is pressed
and what the button does. However, the
OS actually supplies the mechanics for

12SMI, System Management Interrupt; SMM, System
Management Mode—an interrupt that sends the proces-
sor directly into BIOS firmware.

2005 Linux Symposium • 65

this kind of button to work, It would
not work if the OS’s interrupts and ACPI
AML interpreter were not available.

Here a GPE13 causes an ACPI interrupt.
The ACPI sub-system responds to the in-
terrupt, decodes which GPE caused it, and
vectors to the associated BIOS-supplied
GPE handler (_Lxx/_Exx/_Qxx). The
handler is supplied by the BIOS in AML,
and the kernel’s AML interpreter make
it run, but the OS is not informed about
what the handler does. The handler in this
scenario is hard-coded to tickle whatever
hardware is necessary to to implement the
button’s function.

• Event based: This is a platform-specific
method. Each hot-key event triggers a cor-
responding hot-key event from/proc/

acpi/event to notify user space dae-
mon, such asacpid(8) . Then, acpid
must execute corresponding AML meth-
ods for hot-key function.

• Polling based: Another non-standard im-
plementation. Each hot-key pressing
will trigger a polling event from/proc/

acpi/event to notify user space daemon
acpid to query the hot-key status. Then
acpid should call related AML methods.

Today there are several platform specific
“ACPI” drivers in the kernel tree such
as asus_acpi.c , ibm_acpi.c , and
toshiba_acpi.c , and there are even more
of this group out-of-tree. The problem with
these drivers is that they work only for the
platforms they’re designed for. If you don’t
have that platform, it doesn’t help you. Also,
the different drivers perform largely the same
functions.

There are many different platform vendors,
and so producing and supporting a platform-

13GPE, General Purpose Event.

specific driver for every possible vendor is not a
good strategy. So this year several efforts have
been made to unify some of this code, with the
goal that the kernel contain less code that works
on more platforms.

7.1 ACPI Video Control Driver

The ACPI specification includes an ap-
pendix describing ACPI Extensions for Display
Adapters. This year, Bruno Ducrot created the
initial acpi/video.c driver to implement it.

This driver registers notify handlers on the
ACPI video device to handle events. It also ex-
ports files in/proc for manual control.

The notify handlers in the video driver are suf-
ficient on many machines to make the dis-
play control hot-keys work. This is because
the AML GPE handlers associated with these
buttons simply issue a Notify() event on the
display device, and if thevideo.c driver is
loaded and registered on that device, it receives
the event and invokes the AML methods asso-
ciated with the request via the ACPI interpreter.

7.2 Generic Hot-Key Driver

More recently, Luming Yu created a generic
hot-key driver with the goal to factor the
common code out of the platform-specific
drivers. This driver is intended to support two
non-standard hot-key implementations—event-
based and polling-based.

The idea is that configurable interfaces can be
used to register mappings between event num-
ber and GPEs associated with hot-keys, and
mappings between event number and AML
methods, then we don’t need the platform-
specific drivers.

66 • ACPI in Linux

Here the user-space daemon, acpid, needs to is-
sue a request to an interface for the execution of
those AML methods, upon receiving a specific
hot-key GPE. So, the generic hot-key driver im-
plements the following interfaces to meet the
requirements of non-standard hot-key.

• Event based configure interface,/proc/

acpi/hotkey/event_config .

– Register mappings of event number
to hot-key GPE.

– Register ACPI handle to install no-
tify handler for hot-key GPE.

– Register AML methods associated
with hot-key GPE.

• Polling based configure interface,/proc/

acpi/hotkey/poll_config .

– Register mappings of event number
to hot-key polling GPE.

– Register ACPI handle to install no-
tify handler for hot-key polling GPE.

– Register AML methods associated
with polling GPE

– Register AML methods associated
with hot-key event.

• Action interface,/proc/acpi/hotkey/

action .

– Once acpid knows which event is
triggered, it can issue a request to
the action interface with arguments
to call corresponding AML methods.

– For polling based hot-key, once
acpid knows the polling event trig-
gered, it can issue a request to the ac-
tion interface to call polling method,
then it can get hot-key event number
according to the results from polling
methods. Then, acpid can issue an-
other request to action interface to

invoke right AML methods for that
hot-key function.

The current usage model for this driver requires
some hacking—okay for programmers, but not
okay for distributors. Before using the generic
hot-key driver for a specific platform, you need
to figure out how vendor implemented hot-key
for it. If it just belongs to the first two standard
classes, the generic hot-key driver is useless.
Because, the hot-key function can work without
any hot-key driver including this generic one.
Otherwise, you need to flow these steps.

• Disassemble DSDT.

• Figure out the AML method of hot-key
initialization.

• Observing /proc/acpi/event to find
out the corresponding GPE associated
with each hot-key.

• Figure out the specific AML methods as-
sociated with each hot-key GPE.

• After collecting sufficient information,
you can configure them through interfaces
of event_config , poll_config .

• Adjust scripts for acpid to issue right com-
mand to action interface.

The hope is that this code will evolve into
something that consolidates, or at least miti-
gates a potential explosion in platform-specific
drivers. But to reach that goal, it will need
to be supportable without the complicated ad-
ministrator incantations that it requires today.
The current thinking is that the additions of
a quirks table for configuration may take this
driver from prototype to something that “just
works” on many platforms.

2005 Linux Symposium • 67

8 Acknowledgments

It has been a busy and productive year on
Linux/ACPI. This progress would not have
been possible without the efforts of the many
developers and testers in the open source com-
munity. Thank you all for your efforts and your
support—keep up the good work!

9 References

Hewlett-Packard, Intel, Microsoft, Phoenix,
ToshibaAdvanced Configuration & Power
Specification, Revision 3.0, September 2,
2004.http://www.acpi.info

ACPICA Component Architecture Programmer
Reference, Intel Corporation.

Linux/ACPI Project Home page:
http://acpi.sourceforge.net

68 • ACPI in Linux

