
Reprinted from the

Proceedings of the
Linux Symposium

Volume One

July 21th–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Dynamic Kernel Module Support:
From Theory to Practice

Matt Domsch & Gary Lerhaupt
Dell Linux Engineering

Matt_Domsch@dell.com, Gary_Lerhaupt@dell.com

Abstract

DKMS is a framework which allows individual
kernel modules to be upgraded without chang-
ing your whole kernel. Its primary audience
is fourfold: system administrators who want
to update a single device driver rather than
wait for a new kernel from elsewhere with it
included; distribution maintainers, who want
to release a single targeted bugfix in between
larger scheduled updates; system manufactur-
ers who need single modules changed to sup-
port new hardware or to fix bugs, but do not
wish to test whole new kernels; and driver
developers, who must provide updated device
drivers for testing and general use on a wide
variety of kernels, as well as submit drivers to
kernel.org.

Since OLS2003, DKMS has gone from a good
idea to deployed and used. Based on end user
feedback, additional features have been added:
precompiled module tarball support to speed
factory installation; driver disks for Red Hat
distributions; 2.6 kernel support; SuSE ker-
nel support. Planned features include cross-
architecture build support and additional dis-
tribution driver disk methods.

In addition to overviewing DKMS and its fea-
tures, we explain how to create a dkms.conf file
to DKMS-ify your kernel module source.

1 History

Historically, Linux distributions bundle device
drivers into essentially one large kernel pack-
age, for several primary reasons:

• Completeness: The Linux kernel as dis-
tributed on kernel.org includes all the de-
vice drivers packaged neatly together in
the same kernel tarball. Distro kernels fol-
low kernel.org in this respect.

• Maintainer simplicity: With over 4000
files in the kerneldrivers/ directory,
each possibly separately versioned, it
would be impractical for the kernel main-
tainer(s) to provide a separate package for
each driver.

• Quality Assurance / Support organization
simplicity: It is easiest to ask a user “what
kernel version are you running,” and to
compare this against the list of approved
kernel versions released by the QA team,
rather than requiring the customer to pro-
vide a long and extensive list of package
versions, possibly one per module.

• End user install experience: End users
don’t care about which of the 4000 pos-
sible drivers they need to install, they just
want it to work.

This works well as long as you are able to make
the “top of the tree” contain the most current

188 • Linux Symposium 2004 • Volume One

and most stable device driver, and you are able
to convince your end users to always run the
“top of the tree.” Thekernel.org develop-
ment processes tend to follow this model with
great success.

But widely used distros cannot ask their users
to always update to the top of the kernel.org
tree. Instead, they start their products from the
top of the kernel.org tree at some point in time,
essentially freezing with that, to begin their test
cycles. The duration of these test cycles can
be as short as a few weeks, and as long as a
few years, but 3-6 months is not unusual. Dur-
ing this time, the kernel.org kernels march for-
ward, and some (but not all) of these changes
are backported into the distro’s kernel. They
then apply the minimal patches necessary for
them to declare the product finished, and move
the project into the sustaining phase, where
changes are very closely scrutinized before re-
leasing them to the end users.

1.1 Backporting

It is this sustaining phase that DKMS targets.
DKMS can be used to backport newer device
driver versions from the “top of the tree” ker-
nels where most development takes place to the
now-historical kernels of released products.

The PATCH_MATCHmechanism was specif-
ically designed to allow the application of
patches to a “top of the tree” device driver to
make it work with older kernels. This allows
driver developers to continue to focus their ef-
forts on keeping kernel.org up to date, while al-
lowing that same effort to be used on existing
products with minimal changes. See Section 6
for a further explanation of this feature.

1.2 Driver developers’ packaging

Driver developers have recognized for a long
time that they needed to provide backported

versions of their drivers to match their end
users’ needs. Often these requirements are
imposed on them by system vendors such
as Dell in support of a given distro release.
However, each driver developer was free to
provide the backport mechanism in any way
they chose. Some provided architecture-
specific RPMs which contained only precom-
piled modules. Some provided source RPMs
which could be rebuilt for the running ker-
nel. Some provided driver disks with precom-
piled modules. Some provided just source code
patches, and expected the end user to rebuild
the kernel themselves to obtain the desired de-
vice driver version. All provided their own
Makefiles rather than use the kernel-provided
build system.

As a result, different problems were encoun-
tered with each developers’ solution. Some
developers had not included their drivers in
the kernel.org tree for so long that that there
were discrepancies, e.g.CONFIG_SMPvs
__SMP__, CONFIG_2G vs. CONFIG_3G,
and compiler option differences which went
unnoticed and resulted in hard-to-debug issues.

Needless to say, with so many different mech-
anisms, all done differently, and all with differ-
ent problems, it was a nightmare for end users.

A new mechanism was needed to cleanly han-
dle applying updated device drivers onto an
end user’s system. Hence DKMS was created
as the one module update mechanism to re-
place all previous methods.

2 Goals

DKMS has several design goals.

• Implement only mechanism, not policy.

• Allow system administrators to easily
know what modules, what versions, for

Linux Symposium 2004 • Volume One • 189

what kernels, and in what state, they have
on their system.

• Keep module source as it would be found
in the “top of the tree” on kernel.org. Ap-
ply patches to backport the modules to
earlier kernels as necessary.

• Use the kernel-provided build mecha-
nism. This reduces the Makefile magic
that driver developers need to know, thus
the likelihood of getting it wrong.

• Keep additional DKMS knowledge a
driver developer must have to a minimum.
Only a small per-driver dkms.conf file is
needed.

• Allow multiple versions of any one mod-
ule to be present on the system, with only
one active at any given time.

• Allow DKMS-aware drivers to be
packaged in the Linux Standard Base-
conformant RPM format.

• Ease of use by multiple audiences: driver
developers, system administrators, Linux
distros, and system vendors.

We discuss DKMS as it applies to each of these
four audiences.

3 Distributions

All present Linux distributions distribute de-
vice drivers bundled into essentially one large
kernel package, for reasons outlined in Sec-
tion 1. It makes the most sense, most of the
time.

However, there are cases where it does not
make sense.

• Severity 1 bugs are discovered in a sin-
gle device driver between larger sched-
uled updates. Ideally you’d like your af-
fected users to be able to get the single
module update without having to release
and Q/A a whole new kernel. Only cus-
tomers who are affected by the particular
bug need to update “off-cycle.”

• Solutions vendors, for change control rea-
sons, often certify their solution on a par-
ticular distribution, scheduled update re-
lease, and sometimes specific kernel ver-
sion. The latter, combined with releasing
device driver bug fixes as whole new ker-
nels, puts the customer in the untenable
position of either updating to the new ker-
nel (and losing the certification of the so-
lution vendor), or forgoing the bug fix and
possibly putting their data at risk.

• Some device drivers are not (yet) included
in kernel.org nor a distro kernel, however
one may be required for a functional soft-
ware solution. The current support mod-
els require that the add-on driver “taint”
the kernel or in some way flag to the sup-
port organization that the user is running
an unsupported kernel module. Tainting,
while valid, only has three dimensions
to it at present: Proprietary—non-GPL
licensed; Forced—loaded viainsmod
-f ; and Unsafe SMP—for some CPUs
which are not designed to be SMP-
capable. A GPL-licensed device driver
which is not yet in kernel.org or provided
by the distribution may trigger none of
these taints, yet the support organization
needs to be aware of this module’s pres-
ence. To avoid this, we expect to see
the distros begin to cryptographically sign
kernel modules that they produce, and
taint on load of an unsigned module. This
would help reduce the support organiza-
tion’s work for calls about “unsupported”

190 • Linux Symposium 2004 • Volume One

configurations. With DKMS in use, there
is less a need for such methods, as it’s easy
to see which modules have been changed.

Note: this is not to suggest that driver au-
thors should not submit their drivers to
kernel.org —absolutely they should.

• The distro QA team would like to test up-
dates to specific drivers without waiting
for the kernel maintenance team to rebuild
the kernel package (which can take many
hours in some cases). Likewise, individ-
ual end users may be willing (and often be
required, e.g. if the distro QA team can’t
reproduce the users’s hardware and soft-
ware environment exactly) to show that a
particular bug is fixed in a driver, prior
to releasing the fix toall of that distro’s
users.

• New hardware support via driver disks:
Hardware vendors release new hardware
asynchronously to any software vendor
schedule, no matter how hard companies
may try to synchronize releases. OS dis-
tributions provide install methods which
use driver diskettes to enable new hard-
ware for previously-released versions of
the OS. Generating driver disks has al-
ways been a difficult and error-prone pro-
cedure, different for each OS distribution,
not something that the casual end-user
would dare attempt.

DKMS was designed to address all of these
concerns.

DKMS aims to provide a clear separation be-
tween mechanism (how one updates individual
kernel modules and tracks such activity) and
policy (when should one update individual ker-
nel modules).

3.1 Mechanism

DKMS provides only the mechanism for up-
dating individual kernel modules, not policy.
As such, it can be used by distributions (per
their policy) for updating individual device
drivers for individual users affected by Severity
1 bugs, without releasing a whole new kernel.

The first mechanism critical to a system admin-
istrator or support organization is thestatus
command, which reports the name, version,
and state of each kernel module under DKMS
control. By querying DKMS for this infor-
mation, system administrators and distribution
support organizations may quickly understand
when an updated device driver is in use to
speed resolution when issues are seen.

DKMS’s ability to generate driver diskettes
gives control to both novice and seasoned sys-
tem administrators alike, as they can now per-
form work which otherwise they would have
to wait for a support organization to do for
them. They can get their new hardware sys-
tems up-and-running quickly by themselves,
leaving the support organizations with time to
do other more interesting value-added work.

3.2 Policy

Suggested policy items include:

• Updates must pass QA. This seems ob-
vious, but it reduces broken updates (de-
signed to fix other problems) from being
released.

• Updates must be submitted, and ideally be
included already, upstream. For this we
expect kernel.org and the OS distribution
to include the update in their next larger
scheduled update. This ensures that when
the next kernel.org kernel or distro update

Linux Symposium 2004 • Volume One • 191

comes out, the short-term fix provided via
DKMS is incorporated already.

• TheAUTOINSTALLmechanism is set to
NOfor all modules which are shipped with
the target distro’s kernel. This prevents
the DKMS autoinstaller from installing
a (possibly older) kernel module onto a
newer kernel without being explicitly told
to do so by the system administrator. This
follows from the “all DKMS updates must
be in the next larger release” rule above.

• All issues for which DKMS is used are
tracked in the appropriate bug tracking
databases until they are included up-
stream, and are reviewed regularly.

• All DKMS packages are provided as
DKMS-enabled RPMs for easy installa-
tion and removal, per the Linux Standard
Base specification.

• All DKMS packages are posted to the dis-
tro’s support web site for download by
system administrators affected by the par-
tiular issue.

4 System Vendors

DKMS is useful to System Vendors such as
Dell for many of the same reasons it’s useful
to the Linux distributions. In addition, system
vendors face additional issues:

• Critical bug fixes for distro-provided
drivers: While we hope to never need
such, and we test extensively with distro-
provided drivers, occasionally we have
discovered a critical bug after the distri-
bution has cut their gold CDs. We use
DKMS to update just the affected device
drivers.

• Alternate drivers: Dell occasionally needs
to provide an alternate driver for a piece of
hardware rather than that provided by the
distribution natively. For example, Dell
provides the Intel iANS network channel
bonding and failover driver for customers
who have used iANS in the past, and wish
to continue using it rather than upgrading
to the native channel bonding driver resi-
dent in the distribution.

• Factory installation: Dell installs various
OS distribution releases onto new hard-
ware in its factories. We try not to up-
date from the gold release of a distribution
version to any of the scheduled updates,
as customers expect to receive gold. We
use DKMS to enable newer device drivers
to handle newer hardware than was sup-
ported natively in the gold release, while
keeping the gold kernel the same.

We briefly describe the policy Dell uses, in ad-
dition to the above rules suggested to OS dis-
tributions:

• Prebuilt DKMS tarballs are required for
factory installation use, for all kernels
used in the factory install process. This
prevents the need for the compiler to be
run, saving time through the factories.
Dell rarely changes the factory install im-
ages for a given OS release, so this is not
a huge burden on the DKMS packager.

• All DKMS packages are posted to sup-
port.dell.com for download by system ad-
ministrators purchasing systems without
Linux factory-installed.

192 • Linux Symposium 2004 • Volume One

Figure 1: DKMS state diagram.

5 System Administrators

5.1 Understanding the DKMS Life Cycle

Before diving into using DKMS to manage ker-
nel modules, it is helpful to understand the life
cycle by which DKMS maintains your kernel
modules. In Figure 1, each rectangle repre-
sents a state your module can be in and each
italicized word represents a DKMS action that
can used to switch between the various DKMS
states. In the following section we will look
further into each of these DKMS actions and
then continue on to discuss auxiliary DKMS
functionality that extends and improves upon
your ability to utilize these basic commands.

5.2 RPM and DKMS

DKMS was designed to work well with Red
Hat Package Manger (RPM). Many times us-
ing DKMS to install a kernel module is as easy
as installing a DKMS-enabled module RPM.
Internally in these RPMs, DKMS is used to
add , build , and install a module. By
wrapping DKMS commands inside of an RPM,
you get the benefits of RPM (package version-
ing, security, dependency resolution, and pack-
age distribution methodologies) while DKMS
handles the work RPM does not, versioning
and building of individual kernel modules.
For reference, a sample DKMS-enabled RPM
specfile can be found in the DKMS package.

5.3 Using DKMS

5.3.1 Add

DKMS manages kernel module versions at
the source code level. The first require-
ment of using DKMS is that the module
source be located on the build system and
that it be located in the directory/usr/src/
<module>-<module-version>/ . It
also requires that a dkms.conf file exists with
the appropriately formatted directives within
this configuration file to tell DKMS such things
as where to install the module and how to build
it. Once these two requirements have been
met and DKMS has been installed on your sys-
tem, you can begin using DKMS by adding a
module/module-version to the DKMS tree. For
example:

dkms add -m megaraid2 -v 2.10.3

This example add command would add
megaraid2/2.10.3 to the already existent
/var/dkms tree, leaving it in the Added
state.

5.3.2 Build

Once in the Added state, the module is ready
to be built. This occurs through the DKMS
build command and requires that the proper
kernel sources are located on the system from
the /lib/module/<kernel-version>
/build symlink. The make command that is

Linux Symposium 2004 • Volume One • 193

used to compile the module is specified in the
dkms.conf configuration file. Continuing with
the megaraid2/2.10.3 example:

dkms build -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

The build command compiles the module
but stops short of installing it. As can be seen
in the above example,build expects a kernel-
version parameter. If this kernel name is left
out, it assumes the currently running kernel.
However, it functions perfectly well to build
modules for kernels that are not currently run-
ning. This functionality is assured through use
of a kernel preparation subroutine that runs be-
fore any module build is performed in order
to ensure that the module being built is linked
against the proper kernel symbols.

Successful completion of abuild creates, for
this example, the/var/dkms/megaraid2/

2.10.3/2.4.21-4.ELsmp/ directory as
well as the log and module subdirectories
within this directory. The log directory holds
a log file of the module make and the module
directory holds copies of the resultant binaries.

5.3.3 Install

With the completion of abuild , the mod-
ule can now be installed on the kernel for
which it was built. Installation copies the com-
piled module binary to the correct location in
the /lib/modules/ tree as specified in the
dkms.conf file. If a module by that name is
already found in that location, DKMS saves it
in its tree as an original module so at a later
time it can be put back into place if the newer
module is uninstalled. An exampleinstall
command:

dkms install -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

If a module by the same name is already
installed, DKMS saves a copy in its
tree and does so in the/var/dkms/
<module-name>/original_module/
directory. In this case, it would be saved to
/var/dkms/megaraid2/original_
module/2.4.21-4.ELsmp/ .

5.3.4 Uninstall and Remove

To complete the DKMS cycle, you can also
uninstall or remove your module from the
tree. Theuninstall command deletes from
/lib/modules the module you installed
and, if applicable, replaces it with its original
module. In scenarios where multiple versions
of a module are located within the DKMS tree,
when one version is uninstalled, DKMS does
not try to understand or assume which of these
other versions to put in its place. Instead, if
a true “original_module” was saved from the
very first DKMS installation, it will be put back
into the kernel and all of the other module ver-
sions for that module will be left in the Built
state. An exampleuninstall would be:

dkms uninstall -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

Again, if the kernel version parameter is un-
set, the currently running kernel is assumed,
although, the same behavior does not occur
with theremove command. Theremove and
uninstall are very similar in thatremove
will do all of the same steps asuninstall .
However, whenremove is employed, if the
module-version being removed is the last in-
stance of that module-version for all kernels
on your system, after the uninstall portion of
the remove completes, it will delete all traces
of that module from the DKMS tree. To put it
another way, when anuninstall command
completes, your modules are left in the Built

194 • Linux Symposium 2004 • Volume One

state. However, when aremove completes,
you would be left in the Not in Tree state. Here
are two sampleremove commands:

dkms remove -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

dkms remove -m megaraid2
-v 2.10.3 --all

With the first exampleremove command,
your module would be uninstalled and if this
module/module-version were not installed on
any other kernel, all traces of it would be re-
moved from the DKMS tree all together. If,
say, megaraid2/2.10.3 was also installed on the
2.4.21-4.ELhugemem kernel, the firstremove
command would leave it alone and it would re-
main intact in the DKMS tree. In the second
example, that would not be the case. It would
uninstall all versions of the megaraid2/2.10.3
module from all kernels and then completely
expunge all references of megaraid2/2.10.3
from the DKMS tree. Thus,remove is what
cleans your DKMS tree.

5.4 Miscellaneous DKMS Commands

5.4.1 Status

DKMS also comes with a fully functional sta-
tus command that returns information about
what is currently located in your tree. If no
parameters are set, it will return all informa-
tion found. Logically, the specificity of infor-
mation returned depends on which parameters
are passed to your status command. Each sta-
tus entry returned will be of the state: “added,”
“built,” or “installed,” and if an original mod-
ule has been saved, this information will also
be displayed. Some example status commands
include:

dkms status
dkms status -m megaraid2
dkms status -m megaraid2 -v 2.10.3
dkms status -k 2.4.21-4.ELsmp
dkms status -m megaraid2

-v 2.10.3 -k 2.4.21-4.ELsmp

5.4.2 Match

Another major feature of DKMS is the match
command. The match command takes the con-
figuration of DKMS installed modules for one
kernel and applies this same configuration to
some other kernel. When the match completes,
the same module/module-versions that were
installed for one kernel are also then installed
on the other kernel. This is helpful when you
are upgrading from one kernel to the next, but
would like to keep the same DKMS modules in
place for the new kernel. Here is an example:

dkms match
--templatekernel 2.4.21-4.ELsmp
-k 2.4.21-5.ELsmp

As can be seen in the example, the
−−templatekernel is the “match-er”
kernel from which the configuration is based,
while the-k kernel is the “match-ee” upon
which the configuration is instated.

5.4.3 dkms_autoinstaller

Similar in nature to the match command is
the dkms_autoinstaller service. This service
gets installed as part of the DKMS RPM
in the /etc/init.d directory. Depending on
whether anAUTOINSTALL directive is set
within a module’s dkms.conf configuration
file, the dkms_autoinstaller will automatically
build and install that module as you boot your
system into new kernels which do not already
have this module installed.

5.4.4 mkdriverdisk

The last miscellaneous DKMS command is
mkdriverdisk . As can be inferred from its
name,mkdriverdisk will take the proper

Linux Symposium 2004 • Volume One • 195

sources in your DKMS tree and create a driver
disk image for use in providing updated drivers
to Linux distribution installations. A sample
mkdriverdisk might look like:

dkms mkdriverdisk -d redhat
-m megaraid2 -v 2.10.3
-k 2.4.21-4.ELBOOT

Currently, the only supported distribution
driver disk format is Red Hat. For more
information on the extra necessary files and
their formats for DKMS to create Red
Hat driver disks, seehttp://people.
redhat.com/dledford . These files
should be placed in your module source direc-
tory.

5.5 Systems Management with DKMS Tar-
balls

As we have seen, DKMS provides a simple
mechanism to build, install, and track device
driver updates. So far, all these actions have
related to a single machine. But what if you’ve
got many similar machines under your admin-
istrative control? What if you have a compiler
and kernel source on only one system (your
master build system), but you need to deploy
your newly built driver to all your other sys-
tems? DKMS provides a solution to this as
well—in the mktarball and ldtarball
commands.

Themktarball command rolls up copies of
each device driver module file which you’ve
built using DKMS into a compressed tar-
ball. You may then copy this tarball to each
of your target systems, and use the DKMS
ldtarball command to load those into your
DKMS tree, leaving each module in the Built
state, ready to be installed. This avoids the
need for both kernel source and compilers to
be on every target system.

For example:

You have built the megaraid2 device driver,
version 2.10.3, for two different kernel fami-
lies (here 2.4.20-9 and 2.4.21-4.EL), on your
master build system.

dkms status
megaraid2, 2.10.3, 2.4.20-9: built
megaraid2, 2.10.3, 2.4.20-9bigmem: built
megaraid2, 2.10.3, 2.4.20-9BOOT: built
megaraid2, 2.10.3, 2.4.20-9smp: built
megaraid2, 2.10.3, 2.4.21-4.EL: built
megaraid2, 2.10.3, 2.4.21-4.ELBOOT: built
megaraid2, 2.10.3, 2.4.21-4.ELhugemem: built
megaraid2, 2.10.3, 2.4.21-4.ELsmp: built

You wish to deploy this version of the
driver to several systems, without rebuilding
from source each time. You can use the
mktarball command to generate one tarball
for each kernel family:

dkms mktarball -m megaraid2
-v 2.10.3
-k 2.4.21-4.EL,2.4.21-4.ELsmp,
2.4.21-4.ELBOOT,2.4.21-4.ELhugemem

Marking /usr/src/megaraid2-2.10.3 for archiving...
Marking kernel 2.4.21-4.EL for archiving...
Marking kernel 2.4.21-4.ELBOOT for archiving...
Marking kernel 2.4.21-4.ELhugemem for archiving...
Marking kernel 2.4.21-4.ELsmp for archiving...
Tarball location:

/var/dkms/megaraid2/2.10.3/tarball/
megaraid2-2.10.3-manykernels.tgz
Done.

You can make one big tarball containing mod-
ules for both families by omitting the -k ar-
gument and kernel list; DKMS will include a
module for every kernel version found.

You may then copy the tarball (renaming it if
you wish) to each of your target systems using
any mechanism you wish, and load the mod-
ules in. First, see that the target DKMS tree
does not contain the modules you’re loading:

dkms status
Nothing found within the DKMS tree for
this status command. If your modules were
not installed with DKMS, they will not show
up here.

Then, load the tarball on your target system:

196 • Linux Symposium 2004 • Volume One

dkms ldtarball
--archive=megaraid2-2.10.3-manykernels.tgz

Loading tarball for module:
megaraid2 / version: 2.10.3

Loading /usr/src/megaraid2-2.10.3...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.EL...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.ELBOOT...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.ELhugemem...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.ELsmp...
Creating /var/dkms/megaraid2/2.10.3/source symlink...

Finally, verify the modules are present, and in
the Built state:

dkms status
megaraid2, 2.10.3, 2.4.21-4.EL: built
megaraid2, 2.10.3, 2.4.21-4.ELBOOT: built
megaraid2, 2.10.3, 2.4.21-4.ELhugemem: built
megaraid2, 2.10.3, 2.4.21-4.ELsmp: built

DKMS ldtarball leaves the modules in the
Built state, not the Installed state. For each ker-
nel version you want your modules to be in-
stalled into, follow the install steps as above.

6 Driver Developers

As the maintainer of a kernel module, the only
thing you need to do to get DKMS interoper-
ability is place a small dkms.conf file in your
driver source tarball. Once this has been done,
any user of DKMS can simply do:

dkms ldtarball --archive /path/to/foo-1.0.tgz

That’s it. We could discuss at length (which
we will not rehash in this paper) the best meth-
ods to utilizing DKMS within a dkms-enabled
module RPM, but for simple DKMS usability,
the buck stops here. With the dkms.conf file
in place, you have now positioned your source
tarball to be usable by all manner and skill level
of Linux users utilizing your driver. Effec-
tively, you have widely increased your testing
base without having to wade into package man-
agement or pre-compiled binaries. DKMS will
handle this all for you. Along the same line,

by leveraging DKMS you can now easily allow
more widespread testing of your driver. Since
driver versions can now be cleanly tracked out-
side of the kernel tree, you no longer must wait
for the next kernel release in order for the com-
munity to register the necessary debugging cy-
cles against your code. Instead, DKMS can be
counted on to manage various versions of your
kernel module such that any catastrophic errors
in your code can be easily mitigated by a sin-
gular dkms uninstall command.

This leaves the composition of the dkms.conf
as the only interesting piece left to discuss
for the driver developer audience. With that
in mind, we will now explicate over two
dkms.conf examples ranging from that which
is minimally required (Figure 2) to that which
expresses maximal configuration (Figure 3).

6.1 Minimal dkms.conf for 2.4 kernels

Referring to Figure 2, the first thing that is dis-
tinguishable is the definition of the version of
the package and the make command to be used
to compile your module. This is only neces-
sary for 2.4-based kernels, and lets the devel-
oper specify their desired make incantation.

Reviewing the rest of the dkms.conf,
PACKAGE_NAMEand BUILT_MODULE_
NAME[0] appear to be duplicate in nature,
but this is only the case for a package which
contains only one kernel module within it.
Had this example been for something like
ALSA, the name of the package would be
“alsa,” but theBUILT_MODULE_NAMEarray
would instead be populated with the names of
the kernel modules within the ALSA package.

The final required piece of this minimal ex-
ample is theDEST_MODULE_LOCATIONar-
ray. This simply tells DKMS where in the
/lib/modules tree it should install your module.

Linux Symposium 2004 • Volume One • 197

PACKAGE_NAME="megaraid2"
PACKAGE_VERSION="2.10.3"

MAKE[0]="make -C ${kernel_source_dir}
SUBDIRS=${dkms_tree}/${PACKAGE_NAME}/${PACKAGE_VERSION}/build modules"

BUILT_MODULE_NAME[0]="megaraid2"
DEST_MODULE_LOCATION[0]="/kernel/drivers/scsi/"

Figure 2: A minimal dkms.conf

6.2 Minimal dkms.conf for 2.6 kernels

In the current version of DKMS, for 2.6 kernels
the MAKE command listed in the dkms.conf
is wholly ignored, and instead DKMS will al-
ways use:

make -C /lib/modules/$kernel_version/build \
M=$dkms_tree/$module/$module_version/build

This jibes with the new external module build
infrastructure supported by Sam Ravnborg’s
kernel Makefile improvements, as DKMS will
always build your module in a build subdi-
rectory it creates for each version you have
installed. Similarly, an impending future
version of DKMS will also begin to ig-
nore thePACKAGE_VERSIONas specified in
dkms.conf in favor of the new modinfo pro-
vided information as implemented by Rusty
Russell.

With regard to removing the requirement for
DEST_MODULE_LOCATIONfor 2.6 kernels,
given that similar information should be lo-
cated in the install target of the Makefile pro-
vided with your package, it is theoretically pos-
sible that DKMS could one day glean such
information from the Makefile instead. In
fact, in a simple scenario as this example, it
is further theoretically possible that the name
of the package and of the built module could
also be determined from the package Make-
file. In effect, this would completely remove

any need for a dkms.conf whatsoever, thus en-
abling all simple module tarballs to be auto-
matically DKMS enabled.

Though, as these features have not been ex-
plored and as package maintainers would
likely want to use some of the other dkms.conf
directive features which are about to be elab-
orated upon, it is likely that requiring a
dkms.conf will continue for the foreseeable fu-
ture.

6.3 Optional dkms.conf directives

In the real-world version of the Dell’s DKMS-
enabled megaraid2 package, we also specify
the optional directives:

MODULES_CONF_ALIAS_TYPE[0]=
"scsi_hostadapter"

MODULES_CONF_OBSOLETES[0]=
"megaraid,megaraid_2002"

REMAKE_INITRD="yes"

These directives tell DKMS to remake the ker-
nel’s initial ramdisk after every DKMS install
or uninstall of this module. They further spec-
ify that before this happens, /etc/modules.conf
(or /etc/sysconfig/kernel) should be edited in-
telligently so that the initrd is properly assem-
bled. In this case, if /etc/modules.conf already
contains a reference to either “megaraid” or
“megaraid_2002,” these will be switched to
“megaraid2.” If no such references are found,

198 • Linux Symposium 2004 • Volume One

then a new “scsi_hostadapter” entry will be
added as the last such scsi_hostadapter num-
ber.

On the other hand, if it had also included:

MODULES_CONF_OBSOLETES_ONLY="yes"

then had no obsolete references been found,
a new “scsi_hostadapter” line would not have
been added. This would be useful in scenarios
where you instead want to rely on something
like Red Hat’s kudzu program for adding ref-
erences for your kernel modules.

As well one could hypothetically also specify
within the dkms.conf:

DEST_MODULE_NAME[0]="megaraid"

This would cause the resultant megaraid2 ker-
nel module to be renamed to “megaraid” be-
fore being installed. Rather than having to
propagate various one-off naming mechanisms
which include the version as part of the mod-
ule name in /lib/modules as has been previous
common practice, DKMS could instead be re-
lied upon to manage all module versioning to
avoid such clutter. Was megaraid_2002 a ver-
sion or just a special year in the hearts of the
megaraid developers? While you and I might
know the answer to this, it certainly confused
Dell’s customers.

Continuing with hypothetical additions to the
dkms.conf in Figure 2, one could also include:

BUILD_EXCLUSIVE_KERNEL="^2\.4.*"
BUILD_EXCLUSIVE_ARCH="i.86"

In the event that you know the code you pro-
duced is not portable, this is how you can tell
DKMS to keep people from trying to build it

elsewhere. The above restrictions would only
allow the kernel module to be built on 2.4 ker-
nels on x86 architectures.

Continuting with optional dkms.conf direc-
tives, the ALSA example in Figure 3 is taken
directly from a DKMS-enabled package that
Dell released to address sound issues on the
Precision 360 workstation. It is slightly
abridged as the alsa-driver as delivered actually
installs 13 separate kernel modules, but for the
sake of this example, only 9 are shown.

In this example, we have:

AUTOINSTALL="yes"

This tells the boot-time service
dkms_autoinstaller that this package should be
built and installed as you boot into a new ker-
nel that DKMS has not already installed this
package upon. By general policy, Dell only
allows AUTOINSTALL to be set if the kernel
modules are not already natively included
with the kernel. This is to avoid the scenario
where DKMS might automatically install
over a newer version of the kernel module as
provided by some newer version of the kernel.
However, given the 2.6 modinfo changes,
DKMS can now be modified to intelligently
check the version of a native kernel module
before clobbering it with some older version.
This will likely result in a future policy change
within Dell with regard to this feature.

In this example, we also have:

PATCH[0]="adriver.h.patch"
PATCH_MATCH[0]="2.4.[2-9][2-9]"

These two directives indicate to DKMS that
if the kernel that the kernel module is being
built for is >=2.4.22 (but still of the 2.4 fam-
ily), the included adriver.h.patch should first be

Linux Symposium 2004 • Volume One • 199

PACKAGE_NAME="alsa-driver"
PACKAGE_VERSION="0.9.0rc6"

MAKE="sh configure --with-cards=intel8x0 --with-sequencer=yes \
--with-kernel=/lib/modules/$kernelver/build \
--with-moddir=/lib/modules/$kernelver/kernel/sound > /dev/null; make"

AUTOINSTALL="yes"

PATCH[0]="adriver.h.patch"
PATCH_MATCH[0]="2.4.[2-9][2-9]"

POST_INSTALL="alsa-driver-dkms-post.sh"
MODULES_CONF[0]="alias char-major-116 snd"
MODULES_CONF[1]="alias snd-card-0 snd-intel8x0"
MODULES_CONF[2]="alias char-major-14 soundcore"
MODULES_CONF[3]="alias sound-slot-0 snd-card-0"
MODULES_CONF[4]="alias sound-service-0-0 snd-mixer-oss"
MODULES_CONF[5]="alias sound-service-0-1 snd-seq-oss"
MODULES_CONF[6]="alias sound-service-0-3 snd-pcm-oss"
MODULES_CONF[7]="alias sound-service-0-8 snd-seq-oss"
MODULES_CONF[8]="alias sound-service-0-12 snd-pcm-oss"
MODULES_CONF[9]="post-install snd-card-0 /usr/sbin/alsactl restore >/dev/null 2>&1 || :"
MODULES_CONF[10]="pre-remove snd-card-0 /usr/sbin/alsactl store >/dev/null 2>&1 || :"

BUILT_MODULE_NAME[0]="snd-pcm"
BUILT_MODULE_LOCATION[0]="acore"
DEST_MODULE_LOCATION[0]="/kernel/sound/acore"

BUILT_MODULE_NAME[1]="snd-rawmidi"
BUILT_MODULE_LOCATION[1]="acore"
DEST_MODULE_LOCATION[1]="/kernel/sound/acore"

BUILT_MODULE_NAME[2]="snd-timer"
BUILT_MODULE_LOCATION[2]="acore"
DEST_MODULE_LOCATION[2]="/kernel/sound/acore"

BUILT_MODULE_NAME[3]="snd"
BUILT_MODULE_LOCATION[3]="acore"
DEST_MODULE_LOCATION[3]="/kernel/sound/acore"

BUILT_MODULE_NAME[4]="snd-mixer-oss"
BUILT_MODULE_LOCATION[4]="acore/oss"
DEST_MODULE_LOCATION[4]="/kernel/sound/acore/oss"

BUILT_MODULE_NAME[5]="snd-pcm-oss"
BUILT_MODULE_LOCATION[5]="acore/oss"
DEST_MODULE_LOCATION[5]="/kernel/sound/acore/oss"

BUILT_MODULE_NAME[6]="snd-seq-device"
BUILT_MODULE_LOCATION[6]="acore/seq"
DEST_MODULE_LOCATION[6]="/kernel/sound/acore/seq"

BUILT_MODULE_NAME[7]="snd-seq-midi-event"
BUILT_MODULE_LOCATION[7]="acore/seq"
DEST_MODULE_LOCATION[7]="/kernel/sound/acore/seq"

BUILT_MODULE_NAME[8]="snd-seq-midi"
BUILT_MODULE_LOCATION[8]="acore/seq"
DEST_MODULE_LOCATION[8]="/kernel/sound/acore/seq"

BUILT_MODULE_NAME[9]="snd-seq"
BUILT_MODULE_LOCATION[9]="acore/seq"
DEST_MODULE_LOCATION[9]="/kernel/sound/acore/seq"

Figure 3: An elaborate dkms.conf

200 • Linux Symposium 2004 • Volume One

applied to the module source before a module
build occurs. In this way, by including vari-
ous patches needed for various kernel versions,
you can distribute one source tarball and en-
sure it will always properly build regardless of
the end user target kernel. If no corresponding
PATCH_MATCH[0] entry were specified for
PATCH[0] , then the adriver.h.patch would al-
ways get applied before a module build. As
DKMS always starts off each module build
with pristine module source, you can always
ensure the right patches are being applied.

Also seen in this example is:

MODULES_CONF[0]=
"alias char-major-116 snd"

MODULES_CONF[1]=
"alias snd-card-0 snd-intel8x0"

Unlike the previous discussion of
/etc/modules.conf changes, any entries
placed into theMODULES_CONFarray are
automatically added into /etc/modules.conf
during a module install. These are later only
removed during the final module uninstall.

Lastly, we have:

POST_INSTALL="alsa-driver-dkms-post.sh"

In the event that you have other scripts that
must be run during various DKMS events,
DKMS includesPOST_ADD, POST_BUILD,
POST_INSTALL and POST_REMOVEfunc-
tionality.

7 Future

As you can tell from the above, DKMS is very
much ready for deployment now. However, as
with all software projects, there’s room for im-
provement.

7.1 Cross-Architecture Builds

DKMS today has no concept of a platform ar-
chitecture such as i386, x86_64, ia64, sparc,
and the like. It expects that it is building ker-
nel modules with a native compiler, not a cross
compiler, and that the target architecture is the
native architecture. While this works in prac-
tice, it would be convenient if DKMS were able
to be used to build kernel modules for non-
native architectures.

Today DKMS handles the cross-architecture
build process by having separate /var/dkms di-
rectory trees for each architecture, and using
thedkmstree option to specify a using a dif-
ferent tree, and theconfig option to specify
to use a different kernel configuration file.

Going forward, we plan to add an−−arch
option to DKMS, or have it glean it from the
kernel config file and act accordingly.

7.2 Additional distribution driver disks

DKMS today supports generating driver disks
in the Red Hat format only. We recognize that
other distributions accomplish the same goal
using other driver disk formats. This should
be relatively simple to add once we understand
what the additional formats are.

8 Conclusion

DKMS provides a simple and unified mech-
anism for driver authors, Linux distributions,
system vendors, and system administrators to
update the device drivers on a target system
without updating the whole kernel. It allows
driver developers to keep their work aimed at
the “top of the tree,” and to backport that work
to older kernels painlessly. It allows Linux dis-
tributions to provide updates to single device
drivers asynchronous to the release of a larger

Linux Symposium 2004 • Volume One • 201

scheduled update, and to know what drivers
have been updated. It lets system vendors
ship newer hardware than was supported in a
distribution’s “gold” release without invalidat-
ing any test or certification work done on the
“gold” release. It lets system administrators
update individual drivers to match their envi-
ronment and their needs, regardless of whose
kernel they are running. It lets end users track
which module versions have been added to
their system.

We believe DKMS is a project whose time has
come, and encourage everyone to use it.

9 References

DKMS is licensed under the GNU General
Public License. It is available at

http://linux.dell.com/dkms/ ,

and has a mailing list dkms-devel@
lists.us.dell.com to which you may
subscribe at http://lists.us.dell.
com/ .

202 • Linux Symposium 2004 • Volume One

