
Reprinted from the

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
Stephanie Donovan, Linux Symposium
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



BitKeeper for Kernel Developers

Val Henson
val@nmt.edu

Jeff Garzik
jgarzik@mandrakesoft.com

Abstract

BitKeeper1 is a revolutionary new distributed
source control management suite which is ideal
for Linux kernel development. BitKeeper pro-
vides tools which automate and simplify many
common kernel development tasks. In this pa-
per, we describe basic BitKeeper concepts and
operations, BitKeeper solutions for common
kernel development problems, and a work-
flow for interacting with other Linux develop-
ers using BitKeeper. We also discuss some of
BitKeeper’s shortcomings and what is being
done to correct them. We conclude that Bit-
Keeper can dramatically improve the efficiency
of Linux kernel developers.

1 Introduction

A new source control system is available - why
should Linux kernel developers care? Because
this particular source control system was de-
signed from the ground up to solve exactly
the problems inherent in Linux kernel devel-
opment. Kernel developers need to manage
thousands of files, live and work all over the
world, often have limited bandwidth and con-
nectivity, and frequently merge large numbers
of changes. Older source control systems were
designed for a development model where most

1BitKeeper is a trademark of BitMover, Inc.

developers worked in the same physical build-
ing and had 24-hour access to a central reposi-
tory over high bandwidth local networks. The
developers, rarely numbering more than 100
per project, normally checked in changes di-
rectly to the central repository, and could eas-
ily communicate with other developers work-
ing on the same part of the code. Unsurpris-
ingly, the source control software written un-
der these assumptions was not very useful for
thousands of loosely connected developers dis-
tributed world-wide.

The BitKeeper distributed source control sys-
tem was designed for, written for, and tested
by Linux kernel developers. Linux kernel de-
velopment provided the perfect test case for
a truly distributed source control system, and
BitKeeper has been and continues to be shaped
by input from kernel developers. As a result,
it is preeminently useful for kernel develop-
ment. The purpose of this paper is to famil-
iarize kernel developers with the most useful
and time saving features of BitKeeper, so that
developers can spend less time on mechani-
cal make-work and more time on development.
After reading this paper, developers new to Bit-
Keeper may consider trying BitKeeper for the
first time, and developers already using Bit-
Keeper may learn a few new tricks.

First, we’ll briefly review basic BitKeeper con-
cepts and operations (experienced BitKeeper
users should skip this section). We’ll then
examine a variety of problems frequently en-



countered during kernel development and show
how BitKeeper solves these problems. Next,
we’ll review the workflow involved in using
BitKeeper for Linux kernel development. Fi-
nally, we’ll discuss some of the shortcomings
of BitKeeper and what is being done to correct
them.

2 Basic BitKeeper Concepts

This section presumes knowledge of basic
source control concepts such as “check in” and
“check out.” We will instead concentrate on the
ways in which BitKeeper is different from tra-
ditional source control systems. Some of the
major differences between the architecture of
traditional source control systems and the ar-
chitecture of BitKeeper exist in order to satisfy
one of its key design requirements: Developers
should be able to commit work locally, without
accessing a remote repository, until the devel-
oper is ready to merge with the remote reposi-
tory. Some other key design goals were repro-
ducibility, data integrity, and performance.

2.1 Running BitKeeper

First, let’s go over the nuts and bolts of using
BitKeeper: How do you get it, and how do you
run it? Download BitKeeper by going to:

http://www.bitkeeper.com

And clicking on “Downloads.” All BitKeeper
commands are of the form “bk <command>”
to avoid namespace clashes. BitKeeper has
built-in help, just run “bk helptool ” (for
the GUI tool) or “bk help ” (for the com-
mand line tool). While BitKeeper has many
useful graphical tools, a developer can work
with BitKeeper using only the command line

Figure 1: Parent pointers after cloning.

tools - BitKeeper does not require a windowing
environment. We also recommend that first-
time users run the demo, which is at:

http://www.bitkeeper.com/Test.html

2.2 Clones, parents, and children

A BitKeeper repository is a collection of
source controlled files. To create a working
copy or the equivalent of a CVS sandbox, a
developer “clones” a repository. The word
“clone” was chosen because cloning a reposi-
tory creates an exact copy of the original repos-
itory. All of the information and administra-
tive files in the original repository are included
in the new repository, making it possible to
work in any repository completely indepen-
dent of any other repository. After the clone
is completed, the new repository regards the
original repository as its “parent.” The parent
of a tree can be changed at any time, to any
other related tree, or to no tree at all (see Fig-
ures 1, 2). Because each repository is identi-
cal, any repository can be cloned, and the child
of one repository can also be the parent of an-
other repository (see Figure 3). Note, how-
ever, that despite all the parent-child terminol-
ogy, BitKeeper repositories interact on a peer-
to-peer basis, since the relationship between
any two trees can be changed at any time.



Figure 3: Example BitKeeper repository structure.

Figure 2: Parent pointers after changing with
“bk parent ”.

2.3 Changesets

In BitKeeper, changes to individual files are
grouped together into changesets. A changeset
is a grouping of one or more deltas to one or
more files representing a single logical change.
Each changeset can contain multiple deltas to
the same file. Each revision to each file in the
changeset is commented, as is the changeset
as a whole. Logically related changes to sep-
arate files can now be explicitly grouped to-
gether. For example, if one bug fix requires
changes to three different files, all three files’

changes can be grouped into one changeset.
Being able to explicitly group changes together
rather than guessing at their relationships (from
last modified date, or location in the same di-
rectory) is very useful. Even more useful is that
each changeset is an automatic synchronization
point, similar to a CVS tag. Users can repro-
duce the exact state of the repository as of the
point that any changeset was committed.

2.4 Push and pull

Changesets are exchanged between reposi-
tories using “bk push ” and “bk pull ”.
(Note that commits modify only the local
repository, and do not affect the parent reposi-
tory.) Push will send changesets from the child
to the parent, and pull will retrieve change-
sets from the parent to the child. Each push
or pull only sends the changesets which are
present in one tree but not in the remote tree
(see Figure 4). A push will only send changes
which are already merged with the changes in
the remote tree, so merging with another tree is



Figure 4: Example of a push: Initial clone, commit a change, push it back.



done by first pulling the remote tree’s changes,
merging them in the local tree, and then push-
ing the merged changes back. Push and pull
will by default push to or pull from the parent
of the local tree, but these commands can also
take an argument specifying a different tree to
push to or pull from.

Clones can be thought of as creating a per-
sonal, private, unnamed “branch,” and pulls as
a convenient way of merging with the “trunk”
without pushing the “branch’s” changes to the
“trunk.” The push-pull model gives developers
control over whether or not local changes are
pushed to other repositories without sacrific-
ing ease of synchronization with other reposi-
tories. CVS users will enjoy the freedom of be-
ing able to commit half-finished changes with-
out breaking the main tree.

2.5 Conflict resolution

Usually, a push or a pull that changes a lo-
cally modified file will be auto-merged by
BitKeeper. In typical use, BitKeeper auto-
merges approximately 95% of conflicts that
would not have been merged by CVS ordiff
and patch . The percentage of successful
merges relative to CVS actually increases with
the number of developers working on the same
repository. BitKeeper improves the auto-merge
rate in two ways. First, each merge is only
done once - CVS remerges from the point
where the trunk and the branch first separated
every time a branch’s changes are pushed back
to the trunk. BitKeeper only needs to merge
the changes since the last changeset shared by
the two repositories. Second, BitKeeper uses a
unique merging algorithm that no other source
control system implements. The improvement
in the success rate of the merge algorithm is
made possible by storing certain kinds of meta-
data for each file that neither CVS nordiff

andpatch can store or generate.

Each pull to a locally modified repository re-
sults in the creation of a changeset, which is
empty if no files needed to be merged (see
Figures 5, 6). Occasionally, a pull will result
in a conflict that can’t be auto-merged. The
BitKeeper command “bk resolve ” offers a
menu of options for each file with conflicts,
ranging from “Use local file” to “Merge us-
ing graphical three-way file merge tool.” Once
all the conflicts are resolved, the changes re-
quired to resolve the conflicts are saved in the
changeset created by the merge, along with
your comments. For developers who don’t
trust auto-merging, “bk pull ” has an option
to disable the auto-merge feature. Each conflict
can then be individually hand-merged or auto-
merged and the results approved before be-
ing committed. We recommend that develop-
ers try BitKeeper’s auto-merge algorithm even
if they have had bad experiences with auto-
merging in the past; the new algorithm is an
immense improvement over all previous algo-
rithms and, in the authors’ experience, always
merges changes correctly.

What we just described is only the most com-
mon kind of conflict, a conflict in the data of
the file itself, or a content conflict. BitKeeper
also resolves conflicts in many other file at-
tributes: permissions, ownership, type, path-
name, and more. Viewing the pathname of a
file as just one more file attribute makes it easy
to move files around within a BitKeeper repos-
itory.

3 Kernel Development Problems
and Solutions

Now that we’ve explained the basic terminol-
ogy, let’s get to the interesting part: real-life



Figure 5: Repositories before merge, shaded changesets were added since clone.

Figure 6: After a pull of A’s changes to B, with A’s changes merged.



scenarios where BitKeeper makes kernel de-
velopment less painful. All the scenarios de-
scribed were experienced first-hand by the au-
thors while actually engaged in useful kernel
development. They were not artificially con-
structed to show off interesting but useless fea-
tures of BitKeeper but instead are commonly
encountered problems solved by using Bit-
Keeper. Some of the described solutions are
implemented by other source control systems,
but are not easy to do withdiff andpatch ,
the most commonly used tools for working
with the Linux kernel source. We’ll start with
simple scenarios that are relatively easily han-
dled by any source control more complex than
diff andpatch , and gradually build up to
more difficult scenarios where more advanced
source control management systems fail.

3.1 Maintaining different trees

Any serious kernel developer will be familiar
with this scenario: You maintain both a stable
kernel and a development kernel. The stable
kernel contains a few bug fixes and some mi-
nor but safe improvements. The development
kernel contains some riskier changes, new fea-
tures that haven’t been tested well yet, half-
written drivers, and lots of debugging state-
ments. Most likely, it also contains all of the
changes in your stable kernel - or it would, if
you always remembered to patch it with your
latest changes to the stable kernel. But your de-
velopment kernel is just different enough that
patch fails to apply your diffs from the stable
kernel cleanly, especially if you have moved a
few files around. When you want to transfer
your development changes into your stable ker-
nel, parts of the patch usually have to be hand-
applied. It’s generally a pain to keep your de-
velopment and stable kernels in sync.

Figure 7: Example BitKeeper repository struc-
ture.

3.1.1 Solution

Clone your development tree from your stable
tree. Whenever you make a change in your sta-
ble tree, run “bk pull ” from your develop-
ment tree. When your development changes
are ready, “bk push ” them to your stable
tree. BitKeeper’s auto-merge algorithm merges
the majority of your changes for you, even
when you’ve changed the location of some of
the files.

This scenario can be generalized to any num-
ber of child repositories, each with their own
child repositories. A developer could have
“really stable,” “stable,” “semi-stable,” “unsta-
ble,” and “broken” trees, or one child for each
set of experimental changes (see Figures 3, 7).
Most developers using BitKeeper have any-
where from 5 to 50 different clones of the
same repository, each for for a different set
of changes. You might be worried about disk
space at this point, but “bk clone ” has an
option to hard-link the files in the new reposi-
tory to the files in the old repository if they are
both on the same filesystem, so only the files
that have actually changed take up any signif-
icant amount of disk space.2 A clone can be

2This is only a partial solution, see the discussion of
“lines of development” in the section “BitKeeper Draw-
backs.”



thought of as a branch, except that it is far eas-
ier to create and merge back to the “trunk” than
in most source control systems. Cloning a new
repository is so easy that you’ll find yourself
doing it for the most trivial of purposes.

3.2 Updating to the latest version

You went on vacation for two weeks, and now
you are back and 10 patches are pending for
various kernel trees. Your automatic patch
application script chokes because the naming
convention has changed - again. Plus, one of
the patches on your localftp.kernel.org
mirror was corrupted and won’t be updated
until midnight, local time. You settle down
for a long night of painful hand-application of
patches.

3.2.1 Solution

“bk pull ” downloads and applies the
changes for you, regardless of what the latest
kernel version was named, Linux 2.3.42, or
Linux 2.4.0-test-pre7-sr71-blackbird-unstable.
Data integrity checking at every step prevents
any part of your tree from getting corrupted.
Your update is even faster because BitKeeper
compresses the information it sends over the
network (it even reports the compression factor
when it uncompresses the data locally).

3.3 Merging after long separation

You’ve decided to concentrate on getting USB
working - really working, some major im-
provements, and you’re not going to have time
to merge with the vanilla kernel every time a
prepatch is released. Two months later, you
look up and realize that you now have 2MB of

diffs between your tree and the mainline. You
apply the patches, run a “find . -name
’*.rej’ ” and write off getting any useful
work done for the next few hours.

3.3.1 Solution

“bk pull ” applies and auto-merges most of
the changes for you. Occasionally, BitKeeper’s
auto-merge algorithm finds conflicts it can’t
resolve. At this point, “bk resolve ” and
the graphical three-way file merge tool turn
what is usually 3 hours of work withpatch ,
find , and your favorite editor into 15 minutes
of point and click. The three-way file merge
tool shows you the local and remote versions of
the file side-by-side, with the differences color
highlighted (see Figure 8). The changeset com-
ments for each version of the file are shown
above each file. The bottom half of the window
shows the partially merged file, and navigation
keys are described in the lower right-hand cor-
ner. When you’ve finished merging one con-
flict, by clicking on the lines from each file
that you want and/or hand-editing in the merge
window, hit the key to jump to the next conflict.
When you’re happy with the merged file, save
the file and go on to the next file with conflicts.
Simpler commands exist for simpler problems,
for example, “Use remote file” simply replaces
the local file with the remote file.

One of the authors recently merged a heavily
modified 2.4.12 kernel tree with a 2.4.16-based
kernel tree usingdiff and patch (no Bit-
Keeper tree was available for the 2.4.16 ver-
sion). It took her approximately three hours.
She routinely merges from a heavily modified
2.4.12 kernel to 2.4.18 in 15 minutes,3 using
BitKeeper. Usingdiff andpatch instead of
BitKeeper wasted several hours that could have

3After a bit of practice. The first few merges took
about 30 minutes each.



Figure 8: Merging a conflict with the three-way file merge tool.



been spent fixing a particulary vexing timer in-
terrupt bug.

3.4 Creating a patch

Another developer asks you for your boot-
loader changes. They’re in a tree with sev-
eral other unrelated projects and a number of
other changes that you don’t want to send to
anyone. You create a patch, hand edit out
the “misc.c˜ ” file that was accidentally in-
cluded, and send it off. A few minutes later,
the other developer emails you back saying that
the kernel no longer boots, but it does print out
a whole lot of debugging information. You re-
member that you forgot to include the changes
to head.S , and you also forgot to remove that
debugging statement triggered by the bug you
fixed in head.S . Several more iterations and
hand-edited patches later, you finally create a
working patch.

3.4.1 Solution

Run “bk revtool ” to find the changeset
with the comment, “Fixed the bootloader
again” and then run “bk export -tpatch
-r1.203 > ../bootloaderpatch ”,
which exports that changeset in unified diff
format. With Bitkeeper, you naturally group
related changes into one changeset with a
descriptive comment. Once you’ve found the
changeset(s) you want, BitKeeper automati-
cally converts them into the patch format you
prefer. The authors frequently have minor
unreleased bugfixes requested by other devel-
opers or customers; with BitKeeper, creating
and sending the proper patch takes seconds.

Figure 9: Example of sideways synchroniza-
tion.

3.5 Sharing changes

You’d like to see another developer’s changes
to the memory management code, but they’re
not ready to be merged with the main tree. You
send email asking for the patch, but the other
developer has just gone to sleep. You’re in a
different timezone and it’ll be 16 hours before
you get to see the changes. 16 hours later, the
two of you go through the usual “Patch doesn’t
apply” conversation.

3.5.1 Solution

“bk clone ” the other developer’s public Bit-
Keeper repository. Or, if you’re both work-
ing in a clone of the same repository, just “bk
pull <location of tree >” to get the
other developer’s changes. With BitKeeper,
developers don’t even have to be at the com-
puter to share their latest patches, as long as
they have a publicly accessible tree.

This scenario is an example of sideways syn-
chronization, one of the benefits of the peer-to-
peer model (see Figure 9). Changes no longer
have to committed to the central repository be-
fore any other developer can pull them. Now,
any clone of the same repository can be merged
with any other clone, regardless of when or
how it was cloned. Sets of changes can be eas-



ily pushed or pulled around a group of related
repositories in ways that are extremely useful
in the day-to-day life of a kernel developer.

3.6 Moving files

You’ve just reorganized the
linux/drivers/ hierarchy, again.
The patch is huge, so you post to the
linux-kernel mailing list with a brief
description of the change, and the eternal
question, “Should I submit the changes to
Linus as a patch or as a script?” The inevitable
debate ensues, you write at least one buggy
script, and Linus eventually gets the changes.
The next prepatch is even bigger than usual,
and armchair kernel hackers complain bitterly
about it for weeks.

3.6.1 Solution

“bk mv” the files to their new locations.
Since BitKeeper really implements renaming
of source controlled files, rather than “abandon
the old file and create a new file,” the result-
ing changeset is tiny and almost no one even
notices it happened. BitKeeper generates a
unique id for each file in the repository at its
creation, and will never confuse one file with
another just because they happen to have the
same pathname. Other developers who pull
this changeset will find that their changes to
the moved files are “magically” merged into
the correct files at their new locations.

3.7 Debugging a patch

You apply the patch for 2.4.18-pre2 and dis-
cover that it’s broken the NFS server. The
patch includes changes to nearly every file in

fs/nfsd/ , and most of the changes appear
to be cosmetic or related to that API change
last week. You wearily page through the diff,
searching for something that actually changes
the behavior of nfsd.

3.7.1 Solution

The changesets you pulled are all nicely com-
mented. You start up “bk revtool ” and
type “nfs” into the “Search” field to search the
check in comments (see Figure 10), or else
you select a file infs/nfsd/ and examine
the most recent changesets affecting that file.
Locating an interesting changeset, you click
on “View ChangeSet” and quickly skim the
beautiful, easy-to-read graphical diffs (see Fig-
ure 11). (While many graphical diff view-
ing tools exist, this graphical tool is integrated
with the changeset viewing tools, which is a
significant advantage when trying to under-
stand related changes.) In a couple of min-
utes, you find a changeset with the comment,
“Back out Trond’s NFS changes, I don’t know
what they’re for.” Since you know Trond is
the NFS maintainer, you’re a little suspicious
of this changeset. To check, you use revtool
to find the previous changeset for that file, and
you discover that it’s a changeset from Trond
with the comment, “Fix bug in NFS serving.”
You quickly run “bk cset -x <rev >” to
exclude the changeset that reverted Trond’s
fix, recompile, and have NFS serving working
again in 5 minutes flat.

3.8 General debugging

You notice a bug in the yellowfin ethernet
driver. It’s a minor bug, and it’s gone unfixed
for quite some time. You try a few different
versions but can’t quickly find the point where



Figure 10: Searching for “nfs” in revtool.



it broke. You type the first of a long series of
printks.

3.8.1 Solution

No one has a solution for all bugs, but
“bk revtool ” makes it easy to investi-
gate the changes to a file and the reasons
for those changes. Using “bk revtool
drivers/net/yellowfin.c ”, you
check the history ofyellowfin.c and find
a few suspicious changesets, most notably one
from Dave with the phrase, “Totally untested”
in the comments. Spending a few minutes with
“bk revtool ” narrows your likely suspects
down to a few lines of code and gives you
some preliminary ideas of what might have
gone wrong. You find that a few endian-ness
bugs were introduced during an API change
several months ago, and repair the bugs.

3.9 Updating a port

No one has used the Gemini port of the Pow-
erPC branch in 6 months. It doesn’t even com-
pile any more. You’re new to the PowerPC
port and don’t know what’s changed in the last
6 months. Some major reorganizations have
occurred, and it looks like someone attempted
to make the required changes for Gemini but
never bothered compiling them. You look at
other ports but each port varies so wildly that
you can’t find any easy examples to follow.
Resigned, you start learning the PowerPC port
from first principles, downloading the occa-
sional 2MB diff and sifting through it for clues.

3.9.1 Solution

Use “bk revtool ” to look at the context of
each change to the Gemini port. After click-
ing on “View ChangeSet” and looking at the
graphical diffs (see Figure 11), the source of
many of the compilation errors quickly be-
comes obvious - a major reorganization of
SMP support 5 months ago, where the offend-
ing code was cut and pasted without chang-
ing the variable names. The changeset that ac-
complished this reorganization gives you many
clues about what you need to do to make the
Gemini port compatible with the new system.
Other bugs become obvious as soon as you
look at the history of the relevant files and their
associated changesets. Changes that weren’t
made for the Gemini were made for other ports,
providing a model for your bug fixes. Some
bugs are more difficult to fix, but in a day or
two, you have repaired 6 months of neglect and
Gemini is booting again.

We’ve shown only a few of the more common
ways in which BitKeeper can easily save sev-
eral hours a day for the active kernel devel-
oper. BitKeeper goes above and beyond merely
archiving old versions of your code, it also pro-
vides a powerful set of tools for understanding
code and working with other developers.

4 BitKeeper Workflow for the
Linux Kernel

Now that you’re using BitKeeper for kernel de-
velopment, how do you merge your changes
with other maintainers and contributors? The
Linux development model does not work if all
developers are allowed to push to one main
repository, which is the only workflow allowed
by most other source control systems. In-



F
ig

ur
e

11
:

C
ha

ng
e

to
fix

a
co

m
pi

la
tio

n
er

ro
r,

vi
ew

ed
w

ith
B

itK
ee

pe
r’s

gr
ap

hi
ca

ld
iff

vi
ew

er
,r

un
ni

ng
in

si
de

b
k

cs
e

tt
o

o
l

.



stead, maintainers farther up in the hierarchy
pull changesets from those farther down in the
heirarchy, creating a series of staging reposito-
ries from the lowest levels of development up
to the main repository (see Figure 3 for an ex-
ample with one level of staging). Developers
can also push and pull changesets horizontally
between any two trees, regardless of where the
trees are located in the staging hierarchy. We’ll
describe the kernel development workflow be-
tween a maintainer at the top of the heirarchy
and a maintainer one level down.

4.1 Themes

Often the upstream maintainer will happily ac-
cept one group of changes but reject another
group. Since “bk pull ” will pull all of
the changes that are in the remote tree and
not in the local tree, it’s important to sepa-
rate out your changes into logical “themes.”4

For example, you might have the “network
drivers ” theme, the “vm hacks ” theme,
the “utterly innocuous bug fixes ”
theme, and the “personal hacks ” theme.
Each of these themes has its own tree, and for
convenience, you may merge all of your theme
trees into one local tree. Each of the theme
trees will have as its parent the main Linux tree
(see Figure 12).

Generally, the theme trees will not be merged
directly with each other, but will only be pulled
up into the main tree or down into your work-
ing tree. Each of these trees must have been
originally created by cloning from the main
tree (or a clone of the main tree, or a clone’s
clone, ad infinitum). The upstream maintainer
can then pull your changes up with “bk pull

4Many people consider the requirement of “theme”
trees to be one of BitKeeper’s main drawbacks; see the
section “BitKeeper Drawbacks” for information on up-
coming BitKeeper features to correct this.

<location of your tree >”.

4.2 Comments

It is essential to write clear, descriptive check
in comments. Not only will your comments be
publicly archived for all eternity, but the up-
stream maintainer will want to read your com-
ments before pulling the associated changes
and, once pulled, use the comments to help de-
cide whether or not to accept your changes.
Good comments are also valuable as debug-
ging tools, or as landmarks for navigating
around the tree’s history. If your first at-
tempt at commenting your changes is inade-
quate, you can and should use “bk comment
-C<rev >” to update and improve your com-
ments later.5 As an added bonus, very com-
plete and detailed ChangeLogs are easily gen-
erated from your comments.

4.3 Internet accessible repository

The upstream maintainer will need access to
your repository one way or another. Either give
the maintainer ssh access to a machine with
a clone of your repositories, or set up world
readable repositories by running bkd, the Bit-
Keeper daemon. The bkd can use HTTP ports
and proxies, which allows access to your Bit-
Keeper tree through most firewalls. BitMover
provides free hosting for many BitKeeper
repositories athttp://www.bkbits.net
and already hosts over a hundred per-
sonal Linux kernel repositories, including
the main 2.4 and 2.5 repositories. For
more information on hosting a repository,
see http://www.bitkeeper.com

5Comments changed this way don’t propagate; if that
changeset is pulled into another tree, and you change
the comments afterwards, the comments in the other tree
will not be updated, even after a push or pull.



Figure 12: Graph of a typical developer’s theme trees. Changes are pulled in the direction of the
arrows.

/Hosted.html . As a last resort, you may
also send your changes through email, using
“bk send ” and “bk receive ”.

4.4 Send a summary of your changes

No maintainer wants to blindly pull a set of
changes. At the very least, you should send
a summary of the changesets in your repos-
itory before asking the upstream maintainer
to pull them. “bk changes -L 2 >&1 >
../pending ” will auto-generate a summary
of all the pending changesets and their com-
ments.

4.5 Keep your repository up to date

While your upstream maintainer can still pull
your changes even if your tree isn’t up to date
with the upstream tree, you are offloading the
work of resolving potential conflicts onto the
upstream maintainer. Just like withdiff and
patch , your changesets are more likely to
be accepted if they merge without conflicts

into the main tree. It’s good practice to run
“bk pull ” and merge any conflicts yourself
before asking the upstream maintainer to pull
your changes. Occasionally, the upstream
maintainer prefers to do the merging, in which
case you should allow the maintainer to pull
and merge your changes. You can also perform
the equivalent of a “bk push ” without first
doing a “bk pull ” by using the command
“bk -u<maintainer’s tree> send
<maintainer’s email address> ”.

Following these recommendations will result
in a smooth flow of patches to the main tree.
As long as you comment well, logically sepa-
rate your changes, and keep your repositories
up to date, getting your submissions accepted
will be easier than ever.

5 BitKeeper Drawbacks

Like all software, BitKeeper is not perfect.
Some commonly requested features are the
ability to subdivide repositories, to tell push



and pull to send only a subset of new changes
instead of all new changes, and to support true
lines of development. The main complaint is
that changes currently have to be pushed or
pulled in an all-or-nothing manner, requiring
the creation of theme repositories in order to
be able to “cherry pick” subsets of changesets.
The “bk clone ” command has an option to
create the new repository by hard linking the
files in the new repository to the files in the
original repository, which saves a lot of space
if the two clones are on the same filesystem.
This is only a partial solution to the problem
of needing different theme trees for the Linux
style of devlopment.

Two new features addressing these problems
are currently being developed for BitKeeper.
The first feature is nested repositories, which
allows any repository or subrepository to con-
tain multiple subrepositories which can be
cloned and checked into separately. The other
new feature is lines of development, or LODs.
This feature allow a single repository to have
more than one “tip” to the tree, allowing two
or more independent lines of development to
coexist in one repository. A developer will
be able to cherry pick changes from one LOD
and pull them into another LOD without also
pulling all the changesets that came before that
changeset.

While BitKeeper is both usable and useful in
its current state, development on it is not stand-
ing still. Frequently requested features are
written and added as quickly as possible. In
the meantime, it is fairly easy to implement
workarounds for unavailable features.

6 Conclusions

BitKeeper can dramatically improve the ef-
ficiency of Linux kernel developers working
both alone and with other kernel develop-
ers. BitKeeper’s tools aid in understanding
code, debugging problems, and merging with
other developers. Common kernel develop-
ment tasks, such as updating your tree and
sending patches, are trivial when using Bit-
Keeper. Most importantly, kernel developers
no longer spend hours on boring tasks which
can and should be automated. One of the au-
thors estimates that she saves between 2 and
5 hours a week (about 4-10% of total work-
ing hours) by using BitKeeper instead ofdiff
andpatch . Developers who integrate a lot of
code from other developers would almost cer-
tainly save even more time than that. Using
BitKeeper will benefit anyone who works with
the Linux kernel source, and will benefit active
kernel developers most of all.

Developers interested in using BitKeeper for
the Linux kernel may find the BitKeeper Linux
kernel development FAQ useful:

http://www.bitkeeper.com
/Documentation.FAQS.Linux.html


