
Reprinted from the

Proceedings of the
GCC Developers’ Summit

June 17th–19th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Ben Elliston, IBM
Janis Johnson, IBM
Mark Mitchell, CodeSourcery
Toshi Morita
Diego Novillo, Google
Gerald Pfeifer, Novell
Ian Lance Taylor, Google
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



A New ELF Linker

Ian Lance Taylor
Google

iant@google.com

Abstract

gold is a new ELF linker recently added to the GNU
binutils. I discuss why it made sense to write a new
linker rather than extend the existing one. I describe the
architecture of the linker, and new features. I present
performance measurements. I discuss future plans for
the linker. I discuss the use of C++ in writing system
tools.

1 Motivation

For large programs the linker is a significant part of the
compile/edit/debug cycle. When you change a single
source file, other than a header file, the compiler need
only be invoked once, and it need only look at that
source file. The linker needs to look at every input file.
When you change many files, or a single header file in-
cluded by many source files, the compilation may be
run in parallel on a cluster of machines via distcc or
a similar program. The linker must be run serially.

In this paper I will consider a program P. P is based on
a Google internal program; the source code is not avail-
able. It is written largely in C++. P has over 1300 input
objects. When fully linked, P is over 700M. There are
over 400,000 global symbols in the global symbol table
built by the linker.

Building P from scratch using a compilation cluster us-
ing the GNU linker takes 11 minutes, 22 seconds. Of
that, the link time is 2 minutes, 28 seconds, 21% of the
total time. When a single source file, other than a header
file, is modified, less memory is required by the build
system, more of the input objects are available in the
disk cache, and the link time is 1 minute, 11 seconds.
However, since the largest single file in P takes just 25
seconds to recompile without optimization, the link time
dominates the total time required to rebuild for testing.

Most programmers do not think about the linker and do
not use any linker features. The linker is nothing more

than a speed bump in the path of the compile/edit/debug
cycle. Smoothing out the bump is a useful step in mak-
ing programmers’ lives easier.

Note: this paper assumes an understanding of basic
linker concepts such as symbols, sections, and reloca-
tions. It also assumes a basic understanding of the ELF
object file format.

2 Investigation

In May, 2006, I began planning how to speed up the
linker. Since every modern free software operating sys-
tem uses the ELF object file format, my focus was on
improving linker performance for ELF. I was already
familiar with the implementation of the GNU linker. I
was the primary author of the core of the GNU linker,
which I implemented in late 1993 and early 1994 based
on a design by Steve Chamberlain. At the time the GNU
linker did not fully support the ELF object file format.
The design and implementation were optimized for the
a.out and COFF formats. In mid-1994 Eric Youngdale
and I added ELF support to the GNU linker, fitting it
into the existing design.

At a very high level, the GNU linker follows these steps:

• Walk over all the input files, identifying the sym-
bols and the input sections.

• Walk over the linker script, assigning each input
section to an output section based on its name.

• Walk over the linker script again, assigning ad-
dresses to the output sections.

• Walk over the input files again, copying input sec-
tions to the output file and applying relocations.

This structure makes several aspects of ELF linking
awkward.

• 129 •



130 • A New ELF Linker

ELF includes relocation types which do not simply
modify section contents, but also create entries in spe-
cial linker created tables such as the Global Offset Ta-
ble (GOT) and the Procedure Linkage Table (PLT). The
final definition of a symbol—whether it is defined lo-
cally or in a dynamic object, whether it is hidden—
determines the exact treatment of these relocations. The
GNU linker reads the ELF relocations during the first
pass over the input files. At that time, of course, the final
definition of a symbol is not yet known. The GNU linker
uses some mildly complicated bookkeeping to track re-
locations applied to each symbol in order to figure out
how to handle them.

This bookkeeping is merely awkward. What is more
serious is that in order to implement it, the GNU linker
must walk the entire symbol table. Recall that program
P has over 400,000 symbols. Each walk over the symbol
table is a time-consuming process.

In fact, the GNU linker is profligate when it comes to
walking the symbol table. A typical ELF link will walk
the symbol table for each of these tasks:

• Assign versions to symbols.

• Set values of symbols defined in dynamic objects.

• Build the GOT and PLT tables.

• See whether any relocations apply to a read-only
section.

• Find symbol version dependencies.

• Compute the hash code of dynamic symbols.

• Adjust the values of symbols in merged sections.

• Allocate common symbols.

• Number dynamic symbols which are forced local.

• Number the remaining dynamic symbols.

• Set the string offsets for dynamic symbols.

• Output symbols which were forced local.

• Output the remaining symbols.

While some of these walks could be eliminated fairly
easily, their existence is a signal of the awkward fit of

ELF in the GNU linker. The ELF support is imple-
mented with a set of hooks, and the symbol table is
the only common data structure available to every hook.
(By comparison, gold walks the symbol table three
times in a normal link.)

The GNU linker is implemented on top of the BFD li-
brary. This means that an entry in the ELF linker sym-
bol table is implemented by layering on top of the stan-
dard BFD linker symbol table. Most of the ELF back-
ends then layer additional information on top of the ba-
sic ELF information. The multiple layers duplicate in-
formation, and prevent optimizing for alignment. The
result is that for a 32-bit i386 link, each entry in the
symbol table is 80 bytes, and for a 64-bit x86_64 link,
each entry is 156 bytes. (By comparison, in the gold
symbol table, for a 32-bit link the entries are 48 bytes,
and for a 64-bit link the entries are 68 bytes.) Another
consequence of this layering is that the GNU linker must
encode ELF symbol versions in the symbol name, which
leads to some complexity.

As seen above, the linker script is at the heart of the
GNU linker. The linker script is based on section names,
whereas ELF makes most decisions based on section
types and flags (in fact, the only decisions the ELF linker
must make based on section names are GNU extensions
added to the GNU linker without considering how to
best implement them in ELF). The result is a rather com-
plicated linker script, and, more importantly, a lot of
section name pattern matching. (gold avoids this in
the normal case by not using a default linker script.)

The linker script also means that the linker must oper-
ate in terms of sections. ELF has both segments and
sections, and it is more natural for the linker to operate
in terms of segments. The GNU linker must assign ad-
dresses to sections rather than segments, which creates a
complicated and historically buggy piece of code which
assigns the sections to segments.

A basic design decision of BFD, and therefore of the
GNU linker, is to run the same code for both normal
and cross linking. This means that all linking informa-
tion read from an object file is read by calling through a
function pointer which reads the data byte by byte and
shifts it into place. It’s not possible to reliably use byte-
swapping macros like htonl because the alignment is
not known. (gold uses C++ templates to avoid this byte
swapping overhead, as described further below).



2008 GCC Developers’ Summit • 131

The ELF support in the GNU linker is split into four
different parts which communicate via a loosely-defined
set of function pointers.

• The target independent linker code, which handles
the linker script and drives the linking process.

• The ELF linker emulation code.

• The ELF linker proper in BFD.

• The processor specific support being used for a par-
ticular link.

These interfaces do not necessarily make the linker slow,
but they do make it difficult to implement substantial
changes. The module separation is historical rather than
logical.

BFD and the GNU linker are written in C. This makes it
harder to change data structures, such as from a linked
list to a hash table. It also makes it harder to implement
an automatically resizing hash table. Thus the GNU
linker can run into significant slowdowns on large pro-
grams, as the code uses data structures which turn out to
be inadequate but are nontrivial to change. For example,
BFD provides a nice automatically resizing hash table,
but the key must be a string. Any code that wants to use
a different key type is out of luck.

I’ve known about these difficulties with the GNU linker
for some time. Many of them are the fault of the orig-
inal implementor of the code—that is to say, they are
largely my fault. While many people worked on the
GNU linker, I did much of the original implementation
and thus laid the groundwork for these issues. That said,
I think I first proposed a rewrite to avoid using BFD in
1993. Only recently was it possible for me to devote the
time required for the task.

It would be possible to make significant incremental
improvements to the performance of the GNU linker
for ELF. However, I have believed for some time that
the best choice is to redesign the linker with ELF in
mind. Removing the BFD library and taking linker
scripts out of the heart of the linker are not incremental
improvements; they are a complete rewrite. I decided
that it made more sense to implement a new linker from
scratch.

3 Architecture

As mentioned above, the main goal of gold is faster
linking. Accordingly, it is ELF only. ELF is the only
object file format which matters on free software sys-
tems. There is no way to support multiple object file
formats without running at least slightly slower.

I also decided to write it in C++. While it is possible to
argue performance of C vs. C++ on many levels, C++
has a feature which is not easily available in C: template
specialization. I used this to avoid the slowdown due
to byte swapping; I discuss this in more detail below.
Using C++ also permitted easy use of different types of
data structures; this could have been done in C as well,
but is easier in C++.

At a high level, gold follows these steps:

• Walk over the input files, identifying the symbols
and the input sections.

• Walk over the input files again, reading the reloca-
tions and building the PLT and GOT.

• Assign output sections to output segments, and as-
sign addresses to the output segments.

• Walk over the input files again, copying input sec-
tions to the output file and applying relocations.

As can be seen, the main differences from the GNU
linker are the second walk over the input file to read the
relocations, and the omission of the linker script.

Using a second walk over the input files to read the re-
locations simplifies the symbol handling. It also avoids
a walk over the symbol table. It is better to focus on the
subset of symbols which need GOT or PLT entries.

Because there is no default linker script, input sections
can be assigned to output sections as they are read. The
output sections are then easily grouped into output seg-
ments based on their type and flags (read-only, writable,
executable) rather than according to the addresses set in
the linker script. (gold does also support linker scripts
for compatibility purposes; linker scripts use a different
code path for section and segment layout.)



132 • A New ELF Linker

3.1 Threads

gold is multi-threaded. The intent of the threading sup-
port is to permit the linker to overlap disk tasks (e.g.,
reading the input symbol table) and CPU tasks (e.g.,
processing the symbol table). The link process is split
up into tasks. Tasks essentially form a directed graph,
in that a given task may not be started until one or
more other tasks have completed. There are very few
fine-grained locks. A pool of worker threads picks up
tasks as they are available. Unfortunately, using mul-
tiple threads has not proved to be a significant perfor-
mance improvement in practice. It is a minor improve-
ment in some cases, a minor slowdown in others. I am
continuing to investigate whether this is due to bugs in
the implementation or is somehow inherent in the link-
ing process or the work-queue model.

3.2 C++

C++ template specialization permits the same code to be
compiled in multiple different ways. The closest similar
feature in C is preprocessor macros. However, template
specialization is type safe, and has much better debugger
support.

gold uses this to implement byte swapping. Any
function which reads linking information from an input
file—e.g., section headers, symbol table entries, relo-
cation entries—is implemented as a template based on
the class of the output ELF file (an integer, either 32
or 64) and on whether the output ELF file is big or lit-
tle endian. The function then reads values using the
template function Swap<size, big_endian>::
readval. When the endianness of the host and the
target are the same, this is specialized into a simple load
from memory. When the endianness differs, this is a
memory load followed by a byte swap. The linker en-
sures that the ELF data is aligned as needed. This is a
time/space tradeoff, in that it makes gold itself larger,
since multiple versions of various functions are com-
piled (although configure options may be used to
only build specific versions).

It follows that, unlike the GNU linker, gold does not
execute the same code on all systems. The code is
customized based on the endianness. The __BYTE_
ORDER macro from <endian.h> is used to select the
appropriate version of the template function at compile
time. This does raise the possibility of unexpected bugs

in cross linkers. Fortunately the code in question is rel-
atively small and easy to inspect.

This approach should be more clear if you look at the
source code in the figures.

Not all of the code in gold is templatized. There are
various places where non-templatized code must call
templatized code. This generally takes the form of a
switch statement on the target, returning an enumer-
ated value, e.g., TARGET_32_LITTLE for a 32-bit lit-
tle endian target. This switch is evaluated at runtime,
and leads to a call to a function where the choices are
evaluated at compile time.

As mentioned above, the other advantage of C++ is easy
access to flexible data structures. For example, gold
currently uses 22 different hash tables. They have sev-
eral different key types; only three of them have char*
keys (three have std::string keys). Adding a new
hash table to gold is as easy as writing a typedef.
Adding a new hash table to BFD generally requires
writing four functions or macros. Similarly, gold uses
many instances of std::vector for lists of items
where the final number is unknown. The correspond-
ing code in BFD requires explicit size checks and calls
to realloc, the details of which are different for each
instance.

Using C++ does require that gold be able to find the
C++ library at runtime. This is not a problem normally,
but is something to consider when building gold with
an uninstalled compiler.

3.3 Merge sections

When linking code written in C or C++, one of the
slower parts of the linker is the handling of merge sec-
tions. These are sections with the SHF_MERGE flag
set, and are used to hold read-only constants, including
string constants. When the linker finds the same con-
stant in different input files, it merges them into a single
instance of the constant in the output file. This reduces
the size of the program and hopefully improves cache
behaviour. A similar sort of merging is used for excep-
tion frame data found in .eh_frame sections.

This requires building a hash table to hold the constant
values in order to find duplicates, which is easy enough.
The harder part is that there are, naturally, relocations



2008 GCC Developers’ Summit • 133

struct Endian
{
public:
static const bool host_big_endian = __BYTE_ORDER == __BIG_ENDIAN;

};

// Valtype_base is a template based on size (8, 16, 32, 64) which
// defines the type Valtype as the unsigned integer, and
// Signed_valtype as the signed integer, of the specified size.

template<int size>
struct Valtype_base;

template<>
struct Valtype_base<32>
{

typedef uint32_t Valtype;
typedef int32_t Signed_valtype;

};

// Convert_endian is a template based on size and on whether the host
// and target have the same endianness. It defines the type Valtype
// as Valtype_base does, and also defines a function convert_host
// which takes an argument of type Valtype and returns the same value,
// but swapped if the host and target have different endianness.

template<int size, bool same_endian>
struct Convert_endian;

template<int size>
struct Convert_endian<size, true>
{

typedef typename Valtype_base<size>::Valtype Valtype;

static inline Valtype
convert_host(Valtype v)
{ return v; }

};

template<>
struct Convert_endian<32, false>
{

typedef Valtype_base<32>::Valtype Valtype;

static inline Valtype
convert_host(Valtype v)
{ return bswap_32(v); }

};

Figure 1: Template specialization for efficient swapping 1

which refer to the constants. When processing those re-
locations, the output must refer to the location of the
constants in the merged output section. This process-
ing is much more complicated than ordinary relocation
processing, which just needs the value of a symbol. In
my initial implementation, looking up the address of a
merged constant took over 25% of the total CPU time
when linking program P.

The GNU linker implements this lookup by looking for
the constant in the input section and doing a hash table
lookup in the constant table. This is not a bad approach,
but it requires saving the input section contents in mem-

ory, and it requires recomputing the hash code each time
a relocation refers to the constant. I chose instead to
build a mapping from an input section offset to an out-
put section offset. Given a relocation, the input section
offset can be determined from the symbol and the ad-
dend. The mapping can then be used to efficiently find
the output section offset. As it turned out, to make this
efficient in practice, I had to build a separate mapping
for each input merge section, and I had to build a tem-
porary cache while processing an input file. Getting the
right data structures to make this efficient was one of the
most difficult parts in gold.



134 • A New ELF Linker

// Convert is a template based on size and on whether the target is
// big endian. It defines Valtype and convert_host like
// Convert_endian. That is, it is just like Convert_endian except in
// the meaning of the second template parameter.

template<int size, bool big_endian>
struct Convert
{

typedef typename Valtype_base<size>::Valtype Valtype;

static inline Valtype
convert_host(Valtype v)
{

return Convert_endian<size, big_endian == Endian::host_big_endian>
::convert_host(v);

}
};

// Swap is a template based on size and on whether the target is big
// endian. It defines the type Valtype and the functions readval and
// writeval. The functions read and write values of the appropriate
// size out of buffers, swapping them if necessary. readval and
// writeval are overloaded to take pointers to the appropriate type or
// pointers to unsigned char.

template<int size, bool big_endian>
struct Swap
{

typedef typename Valtype_base<size>::Valtype Valtype;

static inline Valtype
readval(const Valtype* wv)
{ return Convert<size, big_endian>::convert_host(*wv); }

};

// This is how the template specializations and function inlining
// works, assuming Endian::host_big_endian is false (i.e.,
// __BYTE_ORDER == __LITTLE_ENDIAN in <endian.h>.

// Swap<32, false>::readval(wv)
// => Convert<32, false>::convert_host(*wv)
// => Convert_endian<size, true>::convert_host(*wv)
// => *wv

// In other words, the call to Swap::readval turns into a memory load
// at compile time.

Figure 2: Template specialization for efficient swapping 2

4 Performance

Using gold when building program P from scratch
takes 1 minute 15 seconds, which is 50% of the time
taken by GNU ld. Using gold when one source file
is changed takes 13 seconds, which is 18% of the time
taken by GNU ld. The difference is primarily how
much of the input is in the disk cache. These compar-
isons were done with a version of GNU ld between 2.17
and 2.18, which had itself been tuned for performance
on large C++ programs by increasing some hash table
sizes.

For a simple hello world program, there is less scope
for improvement. When linking dynamically, the GNU
linker takes 0.063 seconds and gold takes 0.040 sec-
onds, 63% of the time. When linking statically, the
GNU linker takes 0.178 seconds, and gold takes 0.083
seconds, 46% of the time.

gold itself a medium sized C++ program, some 50,000
lines of code. When linking gold, the GNU linker
takes 1.137 seconds and gold takes 0.522 seconds,
45% of the time.

In general testing, gold ranges from twice as fast to
five times as fast, depending on the input. Generally the



2008 GCC Developers’ Summit • 135

larger the program, the bigger the improvement.

5 Features

Although gold is focused on speed, it does have a cou-
ple of new features.

gold has a new --detect-odr-violations op-
tion, which looks for potential violations of the C++
ODR rule. The C++ ODR rule says that a given name
may only refer to a single object. It is fairly easy to
violate in a large C++ program by, say, defining two dif-
ferent template classes with the same name in different
input files. This is forbidden, but it is difficult to detect
in practice, and the C++ standard does not require the
compiler to report it.

gold uses a heuristic to find potential ODR violations:
if the same symbol is seen defined in two different in-
put files, and the two symbols have different sizes, then
gold looks at the debugging information in the input
objects. If the debugging information suggests that the
symbols were defined in different source files, gold re-
ports a potential ODR violation. This approach has both
false negatives and false positives. However, it is rea-
sonably reliable at detecting problems when linking un-
optimized code. It is much easier to find these problems
at link time than to debug cases where the wrong symbol
is used at runtime.

gold has a new --compress-debug-sections op-
tion, which compresses the debugging information us-
ing the zlib library. The debugging information is
highly compressible, and this option typically reduces
it to half the original size. Parsing the debug informa-
tion to eliminate duplicates would also be effective, and
should be implemented in the future; it will decrease the
time required for the debugger to read the information,
but likely at the cost of increasing link time.

6 Future plans

The future plans for gold are, naturally enough, to
make it faster. Two main approaches are planned.

6.1 Concurrent Linking

When using a compilation cluster, the object files will
be generated in parallel. It is possible to run the linker

in parallel with the compilations. As each object is com-
piled, the linker can read the symbols and sections out of
it and do an initial link. It can put the sections into place
in the output file, and record relocations against symbols
which have not yet been resolved. As more object files
are seen, more of the relocations can be resolved.

The resulting output file will not be identical to the
non-concurrent output, and will in fact be slightly less
efficient—there will be wasted space between output
sections. The expectation is that it will be okay to pay
a small penalty in executable size and runtime in return
for much faster link times. When using distributed com-
pilation, the actual link time might be reducible to near-
zero, as the linker will operate while the system would
otherwise be waiting for compilations to complete.

6.2 Incremental Linking

Concurrent linking is optimized for the case where
many objects are being rebuilt. When only a few ob-
jects are being rebuilt, incremental linking is a more
useful approach. Incremental linking modifies an ex-
isting executable by inserting new object code. Where
the new object code is the same size or smaller, it can
simply overwrite the existing object code. When it gets
larger, the incremental linker will have to find new space
to store it.

Incremental linking requires storing relocation informa-
tion in the executable so that all relocations can be up-
dated as required. It also requires storing additional
symbol information, so that the symbol table may be ad-
justed appropriately in case the set of symbols defined in
the object changes.

As with concurrent linking, the resulting output file will
be slightly less efficient. Again this seems a price worth
paying to significantly decrease link times for large pro-
grams. Incremental linking is a particularly natural fit
with incremental compilation approaches.

7 C++ System Tools

gold was among other things an experiment in writing
a system tool in C++. I believe it was a successful one.
gold does run significantly faster than GNU ld. The
gold executable itself is nearly four times larger than
GNU ld, but that is at least in part due to an explicit



136 • A New ELF Linker

tradeoff: much of the code in gold is in fact compiled
four times, for 32-bit vs. 64-bit and for big vs. little en-
dian. (A version of gold configured to only build one
version of that code was 2.5 times larger than GNU ld.)

I encountered some problems with different versions of
g++. g++ 3.2 is unable to compile gold at all, get-
ting confused by template specializations with no pa-
rameters. g++ 4.1 had trouble with uninitialized const
iterators for at least one STL type. g++ 4.3.0 did not
recognize attributes on template function declarations.

When experimenting with different compilers, I occa-
sionally ran into trouble with not being able to find a
sufficiently new version of libstdc++. This was eas-
ily fixed by setting LD_LIBRARY_PATH. However,
it might be desirable to have an option analogous to
-static-libgcc which requests a static link of lib-
stdc++.

gcc does not need to use the template specialization
tricks that gold uses. However, gcc would benefit
from easy access to flexible data structures—just take
a look at vec.h to see what is being done in C. I be-
lieve that it would be appropriate to now start using C++
in gcc, and I would like to encourage everybody to con-
sider that seriously.

8 Acknowledgements

I am the primary author of gold, but as with any pro-
gram it could not have been done without many other
people. Cary Coutant worked on several pieces, no-
tably including support for generating shared libraries
and for TLS. Craig Silverstein wrote the initial x86_64
support with Andrew Chatham, and also implemented
the new options for ODR violations and debug info com-
pression, as well as the general option handling, among
other things. They and others helped with debugging
problems, which were found by many hardy Googlers
willing to test an experimental linker. David Miller con-
tributed the SPARC port.


