
Reprinted from the

Proceedings of the
GCC Developers’ Summit

June 28th–30th, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon Incorporated
C. Craig Ross, Linux Symposium

Review Committee

Ben Elliston, IBM
Janis Johnson, IBM
Mark Mitchell, CodeSourcery
Toshi Morita
Diego Novillo, Red Hat
Gerald Pfeifer, Novell
Ian Lance Taylor, Google
C. Craig Ross, Linux Symposium
Andrew J. Hutton, Steamballoon Incorporated

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Improving Software Floating Point Support

Nathan Sidwell
CodeSourcery Inc

nathan@codesourcery.com

Joseph Myers
CodeSourcery Inc

joseph@codesourcery.com

Abstract

GCC’s runtime library contains a set of soft-
ware floating point routines, to be used when
the required operation is not available in hard-
ware. These routines have not been signifi-
cantly optimized, and software floating point
performs more poorly than it could. We discuss
various pitfalls in their implementation. The
GNU C library, glibc, also contains software
floating point routines, and those have been op-
timized reasonably well. We show performance
numbers obtained from portions of the EEMBC
benchmark running on two PowerPC systems
comparing the routines from the two libraries.
We discuss the incorporation of the glibc
routines into GCC’s runtime library, and show
how to convert other backends to use the new
glibc routines.

1 Benchmarks

Our initial goal was to improve the perfor-
mance of a subset of EEMBC[1] benchmarks
running on PowerPC 405 and 440 hardware
without using floating point instructions. The
EEMBC benchmarks consist of a few sets of
tests targeted at particular application areas—
automotive, office, networking, consumer, etc.
We used a subset of the automotive, networking
and consumer sections. The automotive suite is

particularly floating point intensive. After ob-
taining baseline benchmark numbers, we pro-
filed the suite and examined each test’s profile.
Nearly all of the automotive tests spent some
time in floating point routines. Five of the 16
automotive benchmarks spent significant time
in a few floating point routines. Table 1 tabu-
lates the time spent by those benchmarks in the
floating point routines. It tabulates every rou-
tine accounting for more than 2% of the total
processor usage. As can be seen, the bench-
marks that use floating point spent considerable
time in the floating point library. The final col-
umn is the geometric mean of the of the frac-
tion of execution time for those benchmarks
that showed usage. Mathematically, that is not
a robust calculation because of the arbitrary 2%
cutoff. However, it does give a guideline as to
which routines are important.

2 Floating Point Libraries

GCC contains an implementation of software
floating point in fp-bit.c and associated
files. These implement the regular IEEE 754[2]
operations of addition, subtraction, multipli-
cation, division, comparison and conversions.
Through the use of macros, fp-bit.c is
used to generate float, double, and long
double routines. In this paper, fpbit refers
to the combined float and double routines



212 • Improving Software Floating Point Support

Testcase basefp01 matrix01 a2time01 tblook01 iirflt01 Geometric
Routine Mean
__floatsidf 63.1% 18.1% 55.6% 39.9%
__muldf3 29.0% 32.42% 6.4% 13.3% 16.8%
__divdf3 12.7% 12.7%
__pack_d 16.3% 19.70% 7.4% 16.8% 4.7% 11.3%
__unpack_d 12.4% 15.74% 6.6% 9.6% 3.5% 8.5%
_fpadd_parts 22.1% 20.52% 3.9% 7.7%
__pack_f 5.8% 5.8%
__subdf3 4.45% 4.5%
__extendsfdf2 2.9% 2.9%
__adddf3 2.4% 2.4%
__divsf3 2.2% 2.2%
Total 94.9% 92.83% 83.5% 72.6% 63.8%

Table 1: Benchmark Profiles

of these files. In addition, libgcc2.c con-
tains some conversion routines which are used
in certain circumstances.

Our initial plan involved optimizing fpbit it-
self. There are a number of improvements that
can be made, and we estimated they would
probably give a factor of 2 speedup on some
of the routines. However, it came to our at-
tention that an alternative library had already
been proposed. Torbjorn Granlund submitted
ieeelib[3] some time ago, but it had never
been integrated. ieeelib implements many
of the ideas we had for fpbit. We exper-
imented by using it for the benchmarks and
found that it gave a speedup of around 25%
on EEMBC. Integrating ieeelib would be
a better way forwards than improving fpbit
itself.

Following this, we realised that glibc[4]
also contained software floating point rou-
tines. Again we experimented with a version
of GCC containing those routines and found it
gave an improvement of around 20%. Clearly
ieeelib and glibc were both candidates
for integration. There were a number of advan-

tages of each library:

• ieeelib has a smaller footprint than
glibc.

• glibc contains support for different
rounding modes, including runtime selec-
tion of the rounding mode. (The bench-
marks we performed hardwired the round-
ing mode, so the comparison was compar-
ing like for like features.)

• glibc has support for floating point ex-
ceptions, even integrating these into the
hardware, when that is feasible. (Again,
we made the above measurements with
this disabled.)

• Using glibc routines would reduce the
number of different software floating point
implementations in GNU software.

This last point was very attractive. Reduc-
ing the number of implementations of software
floating point would reduce maintenance. As
we discovered, by uncovering some bugs both
latent and otherwise, writing correct floating



GCC Developers’ Summit 2006 • 213

point code is tricky. Therefore, having a com-
mon implementation would improve software
quality, because if a bug was found in either
glibc or GCC, the patch could be applied to
both.

The size difference between ieeelib and
glibc seemed disadvantageous to glibc.
Table 2 shows the sizes of fpbit, ieeelib
and glibc routines. As can be seen, the
first two are in the same ballpark, whereas the
glibc routines are much larger.

Analysis showed there to be two causes of this.
Firstly glibc has separate addition and sub-
traction routines, and secondly its multiplica-
tion and division routines are larger. Both of
these turn out to have the same cause, namely
correct support for NaNs, rounding modes and
exceptions. Even though we had disabled as
many additional features as possible, their ef-
fects were still present. We thought that it
would be possible to improve the glibc code
size somewhat, but were not sure how far the
tendrils of the optional features could be re-
moved. In the worst case, we felt that on a
modern system an additional 6–7K bytes is not
as significant as it used to be.

Additional advantages of glibc are its con-
trol of rounding mode and support for excep-
tions. Indeed, it could provide dynamic con-
trol of the rounding mode, which is desirable in
some contexts. Although we were not imme-
diately concerned with this, we were sure that
others would be.

We decided that merging the glibc routines
would be a technically better solution, and
chose to pursue it.

However, there was a license issue; glibc is
licensed under the LGPL[5], whereas the com-
piler’s floating point emulation routines need
to be licensed with runtime exception. That
is, although the implementation of the routines

can be licensed under the LGPL, merely link-
ing them into a program as part of GCC’s run-
time support should not bring that program un-
der the requirements of the LGPL (of course,
this would not invalidate any other reason why
the (L)GPL might apply). As the FSF[6] is
the copyright holder of both glibc and GCC,
only they could make the decision to allow
the runtime exception for the glibc routines.
We presented the technical arguments to the
FSF, and persuaded Richard Stallman to allow
a change of license. The FSF approved the use
of LGPL plus runtime exception for the copies
in both glibc and GCC. This means that the
source files can be identical in both places,
rather than having to add the runtime exception
license wording to only the GCC copies.

3 Unpacking IEEE Numbers

The primary failing of fpbit is in its pack-
ing and unpacking of floating point numbers.
Nearly all its deficiencies are artifacts of how
this is done.

All fpbit routines commence by fully un-
packing the floating point number’s mantissa,
exponent and sign into separate fields of a
structure. In addition they determine the num-
ber’s category as one of zero, denormal, sig-
nalling NaN, quiet NaN, infinity or regular
number. The unpacked exponent is unbiased
and the unpacked mantissa has the implicit 1
bit inserted. Denormals are scaled to be con-
sistent with the regular representation of−1S×
M×2E . Apart from clearly taking time, this un-
packing has an immediate deficiency. Firstly it
means the floating point routines use structures,
and pass them by address, thereby forcing these
parameters to be passed in memory with all the
slowdown that entails.1 A second deficiency

1GCC’s structure splitting optimization is inapplica-



214 • Improving Software Floating Point Support

Library fpbit ieeelib glibc
Text size (bytes) 10688 9284 16940

Table 2: Library Sizes on PowerPC 440

is more subtle. The complete categorization
makes the floating point routines begin with
several separate checks for the rare categories.
For instance the code of _fpmul_parts (the
core of the multiplication routine) begins with:

if (isnan (a)) ...
if (isnan (b)) ...
if (isinf (a)) ...
if (isinf (b)) ...
if (iszero (a)) ...
if (iszero (b)) ...

This is actually more checks than is immedi-
ately apparent, because isnan checks for both
quiet and signalling NaN categories. Naturally
these checks have to be done, but the IEEE
encoding uses only two special exponent val-
ues (zero and all ones) to encode all of the
non-normal numbers. Thus it would be possi-
ble to have an early check for the two special
encodings, and then determine which specific
non-normal encoding has occurred out of the
mainline of the routine. In fact, in the case of
_fpmul_parts, this separation of all the dis-
tinct special cases is not necessary because all
the separate if bodies are identical, or nearly
so! This is a classic case of optimizing for the
rare condition.2 Before we started investigating
ieeelib and glibc we made a 0.4% im-
provement by adding __builtin_expect
calls to the various isnan and isinf macros
so the compiler can optimize the expected code
path.

ble here, as the packing and unpacking routines are not
inlined.

2Implementers of networking stacks have discovered
that early and complete unpacking of packet headers is a
pessimization for the same reasons.

4 Improvements to glibc

We made a number of improvements to glibc
in order to bring its performance, where it was
deficient, up to that of ieeelib.

4.1 Unpacking

Some glibc routines do partial unpacking to
obtain an exponent, sign and mantissa, thereby
not having the pessimization described in Sec-
tion 3. The exponent encodes the special val-
ues of interest. Most do further classification,
but using macros and separate local variables
instead of functions and structures, and using
switch statements to reduce the number of
checks. Depending on the operation being per-
formed, ieeelib is even more specialized; it
might do a minimal unpacking. It also never
bothers adding in the implicit one bit in its
expanded form. This turns out to be signif-
icant for float conversion operations and ad-
dition and subtraction where ieeelib was
much faster than glibc. We patched glibc
to perform minimal unpacking in these cases
and improved its performance to be similar to
that of ieeelib.

4.2 Addition and Subtraction

As mentioned, glibc has separate addition
and subtraction routines. Naively it would
seem that they could be trivially combined.
Unfortunately this turns out to be difficult to
achieve, because of the need to generate the
correct NaN value in certain circumstances. A



GCC Developers’ Summit 2006 • 215

set of lower level macros, which provide target
specific features, are used to construct glibc’s
routines. In the case of addition and subtrac-
tion, the macros of interest are _FP_ADD_
INTERNAL and _FP_CHOOSENAN. The sub-
traction routine inverts the sign of the subtra-
hend unless it is a NaN. Then it calls _FP_
ADD_INTERNAL. Addition simply invokes
_FP_ADD_INTERNAL. This would suggest a
simple merging scenario, but unfortunately:

• There is an excess of state to simply call
an underlying routine efficiently.

• _FP_ADD_INTERNAL takes an opera-
tion parameter so that target specific code
can return a different NaN for each opera-
tion, in the case of an exception.

Removing the excess state could be achieved
by not bothering to detect a NaN subtrahend,
and simply inverting its sign in all cases.
This would change the behaviour of ‘F −
NaN’; rather than returning ‘NaN’, it would re-
turn ‘−NaN’. For GCC’s purposes, the oper-
ation parameter is unimportant, but removing
it would probably break our requirement that
the GCC copy be readily updateable from the
glibc sources. It also appears that glibc it-
self only uses this operation parameter for the
x86 and x86_64 targets, where the software
floating-point code is not actually used. How-
ever, the same glibc code is used in the Linux
kernel math emulation, where consistency with
hardware choice of NaN is required. It is unfor-
tunate that this single target family causes such
difficulty. It is possible that the distinction is
unnecessary in even these two cases, in which
case the operation parameter could be removed,
and much simplification achieved. We decided
to leave this as an open issue, keeping the addi-
tion and subtraction routines separate.

4.3 Bit Shifting

One significant change we made to fpbit
before we started porting glibc was to use
__builtin_clz to find the most significant
set bit in integer to floating point conversion
routines. This yielded a 7% performance im-
provement on EEMBC. We made the same
changes to glibc where we replaced hand
coded asm inserts with __builtin_clz,
leaving it to the compiler to determine the most
efficient code sequence.3

4.4 Other Patches

As part of preparing the glibc code for in-
tegration into GCC, support was added for the
new floating point functions that had been in-
serted into fpbit since 1999. Functions were
changed to use typedefs, such as SFtype in-
stead of float. Additionally many changes
were made to reduce the number of compiler
warnings generated by the code. Some of these
resulted from the heavy use of macros in the
glibc code where unreachable code caused
unwanted warnings.

4.5 Bug Fixing

In addition to improving glibc’s perfor-
mance, we uncovered a number of implemen-
tation bugs. This bolstered our thesis that soft-
ware floating point can be tricky, and using the
same implementation in both glibc and GCC

3In general glibc contains a large number of assem-
bly inserts for ‘optimized’ code sequences. These might
have produced better code than GCC in the past, but
we now find the compiler producing better sequences.
Worse, we have discovered that an assembly insert might
be subtly wrong in that it does not describe the side ef-
fects or constraints correctly, leading to incorrect code
generation with GCC’s better optimizers.



216 • Improving Software Floating Point Support

would improve both. We found these bugs both
through code inspection and the use of test-
suites. Firstly, the GCC testsuite found some
problems with the glibc routines. Secondly,
we used the ucbtest[7] testsuite, which is
designed for checking awkward IEEE cases.
The bugs found and fixed in glibc include the
following:

• Undefined behavior involving signed inte-
ger overflow.

• Undefined behavior involving shifting in-
tegers by the width of their type.

• Conversion of float to long long
could left shift by a negative amount.

• Conversion of long long to float
used a macro on long long values that
only worked correctly on values of size
_FP_W_TYPE_SIZE (typically sizeof
long).

• An off-by-one-error in integer to floating
point conversion when the integer value
had exactly one more bit than the number
of floating point mantissa and guard bits.
For example, converting 3×226 to float
yielded 228.

• Incorrect exceptions were set in various
cases.

We also found and fixed bugs outside of
glibc:

• In EEMBC—reliance on undefined behav-
ior of out-of-range floating point to un-
signed integer conversions.

• In fpbit—a latent bug in a previously
unused function causing incorrect round-
ing.

• In libgcc2—conversions of TImode
(128-bit) integers to floating-point values
had fundamental bugs.

5 Results

The EEMBC benchmarks report a number of
values for each test. The value we used to
measure improvement was the number of iter-
ations per second. Because EEMBC reports
iteration times as an integral number of mi-
croseconds, precision is lost with that more ob-
vious measure of speed. As all the different
tests have not been weighted against each other,
we used the geometric mean in order to give
each test equal weighting.4 As stated earlier,
we restricted our measurements to the automo-
tive, networking and consumer subsections of
the EEMBC suite. For the 405 benchmarks
we used -mcpu=405 -O2 and for the 440
benchmarks we used the -mcpu=440 -O2
optimization flags. In addition to the float-
ing point changes, we improved strlen and
16 bit multiplication by adding support for ad-
ditional instructions. These particular bench-
marks do not appear to make use of those fea-
tures, and we believe the entire performance
improvement shown here is due to the soft-
ware float changes. Table 3 enumerates the be-
fore and after iteration counts and the speedup
achieved. Note, these are not official EEMBC
benchmark results, and may be used as a
speedup guide only. As can be seen, the most
improved test case’s performance increased by
nearly 360%.

6 Using the glibc Routines

We have imported the glibc routines into
GCC. The primary source for these routines re-
mains glibc, and any fixes to GCC’s copy

4Using an arithmetic mean would unfairly bias the
work to improving the speed of the longer benchmarks.
There is no evidence that the longer iteration times are
anything other than an artifact of the particular test being
performed.



GCC Developers’ Summit 2006 • 217

405 440 softfp
Benchmark Tests Before After Speedup Before After Speedup
basefp01 1 3226.5 8762.2 2.72 13205.7 35550.5 2.69
matrix01 1 20.1 44.5 2.21 78.2 183.8 2.35
a2time01 1 26264.0 115293.7 4.39 97561.0 448129.1 4.59
tblook01 1 11009.2 23158.3 2.10 40566.3 97924.0 2.41
iirflt01 1 19656.4 60975.6 3.10 73432.2 234521.6 3.19
Automotive 16 13361.2 18445.2 1.38 52301.0 73497.2 1.41
Consumer 5 29.7 29.8 1.00 106.7 108.7 1.02
Network 6 802.9 806.3 1.00 2390.7 2386.9 1.00
Combined 27 2308.1 2797.2 1.21 8366.4 10266.2 1.23

Table 3: Benchmark Numbers

needs to be sent upstream to glibc. Fortu-
nately the sources are identical in both GCC
and glibc, because of the identical license
change in both places.

The integration of the glibc routines into
GCC has been designed to make it easy to
start using these routines for new targets.
Whereas fpbit uses special case code in
mklibgcc.in, glibc uses the existing tar-
get makefile fragment mechanism. GNU Make
features are used in t-softfp to select the
functions required on a given target. In addition
to defining the variables used by t-softfp,
a file called sfp-machine.h must be pro-
vided for each target. Initial versions of this file
for many targets are already located in the ap-
propriate sysdeps/ARCH/soft-fp direc-
tory of glibc.

A target may specify the floating point and
integer modes for which functions are to be
compiled. The conversions between floating
point modes to support may also be specified.
This allows for targets with some hard-float and
some soft-float modes. For those, glibc code
will be used for conversions between the hard-
float and soft-float modes. In such a case, the
sfp-machine.h file may define how to raise
exceptions and determine the rounding mode
for the soft-float modes in a manner consistent

with the exception flags and rounding modes
provided by the hardware. A case where this
might be useful in future is to support the op-
tional __float128 type in the x86_64 ABI.

7 Future Work

The glibc routines offer the possibility of fur-
ther improvements. As has been already men-
tioned, the dynamic control of rounding mode
is possible, along with integrating the excep-
tion mechanism with that provided by the sys-
tem’s glibc fenv.h interface. The routines
could be extended to support the float128
type present in the x86_64 ABI.

Further investigation of the issues involved in
merging the addition and subtraction routines
could be done, thereby reducing the code foot-
print.

There currently remains some overlap between
the operations provided in the glibc routines
and those provided by libgcc2. The glibc
routines replace the libgcc2 routines. For
a pure soft-float target, this is exactly what is
desired, but for a target with hardware floating
point, but supporting a variant soft-float ABI,



218 • Improving Software Floating Point Support

the glibc routines would be used in both sets
of multilibs. The libgcc2 routines will po-
tentially handle rounding and exceptions con-
sistent with the hardware floating point. This
can be solved by implementing the above men-
tioned rounding and exception control to the
glibc routines, and expunging the libgcc2
routines from GCC. This would continue the
reduction in the number of different floating
point routines.

Further details of the glibc routines and sug-
gested further work are available on the GCC
Wiki at http://gcc.gnu.org/wiki/
Software%20floating%20point.

8 Acknowledgements

This work was sponsored by the PowerPC Li-
censing Team at IBM. We are grateful for the
opportunity afforded to speed up this part of
GCC’s support across all architectures.

References

[1] The Embedded Microprocessor
Benchmark Consortium,
http://www.eembc.org.

[2] Standard for Binary Floating Point
Arithmetic, ANSI/IEEE Standard
754–1985.

[3] New IEEE P854 emulation library,
Torbjorn Granlund (tege@swox.com),
http://gcc.gnu.org/ml/gcc/
1999-07n/msg00553.html

[4] The GNU C Library, http:
//www.gnu.org/software/libc

[5] GNU Lesser General Public License,
http://www.gnu.org/
copyleft/lesser.html

[6] The Free Software Foundation,
http:www.fsf.org

[7] Testing difficult cases of IEEE 754
floating point arithmetic, David G.
Hough (dgh@validgh.com) et al.,
http://www.netlib.org/fp/
ucbtest.tgz


