
Proceedings of the
GCC Developers’ Summit

June 22nd–24th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Eric Christopher,Red Hat, Inc.
David Edelsohn,IBM
Richard Henderson,Red Hat, Inc.
Andrew J. Hutton,Steamballoon, Inc.
Janis Johnson,IBM
Toshi Morita
Gerald Pfeifer,Novell
C. Craig Ross,Linux Symposium
Al Stone,HP
Zack Weinberg,Codesourcery

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Compilation Wide Alias Analysis

Daniel Berlin
IBM T.J. Watson Research Center

dberlin@dberlin.org

Kenneth Zadeck
NaturalBridge Inc.

zadeck@naturalbridge.com

Abstract

The intermediate code in a compiler can be di-
vided into three broad categories: register oper-
ations, branching instructions, and storage op-
erations. Register operations and branch in-
structions1 have transparent semantics, i.e. they
are easy to understand. Storage operations are
more difficult to understand because of their
underlying addressing computations. Because
many different address expressions can map to
the same address, care must be taken when ei-
ther reordering or removing memory operations
to assure that the source program still computes
the same result.

While there is a one-to-one mapping between
the register operations and values computed
in the program, no simple relationship exists
for the storage operations. Loads and stores
typically reference sets of memory locations,
and two seemingly independent address expres-
sions may evaluate to the same storage location.
Thus, while it is fairly straight-forward to re-
order register operations, the ability to reorder
storage operations is limited by the ability to
reason about the addresses that may be created
in the reordered computations. The analysis of
the computations that produce the addresses is
calledalias analysis.

In the absence of alias analysis, each write op-
eration becomes abarrier that no other mem-

1with the exception of computed goto statements

ory reference can cross. Barriers inhibit many
optimizations, especially those that attempt
to either remove redundant computations, or
move operations to locations where the execu-
tion is less costly.

We present both an alias analysis phase as well
as several transformations that make use of this
information. The paper concludes with some
simple measurements as well as directions for
further work.

1 Alias Analysis

The literature contains a large number of pa-
pers that describe techniques for alias analysis.
There are many parameters that can be used to
characterize the algorithms:

scope How much of a program can be ana-
lyzed at one time? Common values range
from small regions, like single loops to en-
tire programs.

flow sensitivity Does the algorithm attempt to
understand the control flow of the pro-
gram?

In a flow-sensitivealgorithm, information
is propagated along the control flow graph
edges. In aflow-insensitivealgorithm, the
ordering of the statements is ignored.

• 15 •



16 • Compilation Wide Alias Analysis

Many algorithms that have their scope
limited to a single function or smaller can
afford to be flow-sensitive. It is unusual
to find flow-sensitive interprocedural algo-
rithms that can be performed fast enough
to be used in a compiler.

unit of analysis What is the smallest unit of
analysis? For many algorithms, each vari-
able is analyzed independently. For oth-
ers, all the variables of the same type are
aggregated together.

The choice of intermediate representation
can make a difference here. If the unit
of analysis are variables, translation to
static single assignment (SSA) form can
be of great benefit. SSA form provides
many of the benefits of a flow-sensitive
algorithm when using a flow-insensitive
framework without incurring the cost of
flow-sensitivity. This is because SSA form
encapsulates many aspects of flow into its
representation.

records and structures Does the algorithm
assume that an assignment to a structure
may modify all of the fields of the struc-
ture or can each field be modeled sepa-
rately?

arrays and lists Does the algorithm assume
that an assignment to an array may modify
all of the elements of the array or can each
element, or groups of elements, be mod-
eled separately?

type system Does the algorithm take into ac-
count any restrictions that the type system
or inheritance system places on acceptable
programs?

time and space complexityHow much time
and space are used to compute the result?
The limiting factor of many techniques is
the time complexity.

Understanding how the parameters interact is
important to understanding what aliasing can
do. Most techniques have a sweet spot, where
they provide useful information at a reasonable
cost. But if you try to push the technique be-
yond that point, the algorithm may become pro-
hibitively expensive.

For this reason, most compilers implement sev-
eral different alias algorithms, each providing
a different kind of information useful for a dif-
ferent set of transformations. For instance, in
GCC, the scalar evolution pass is flow-sensitive
and only deals with arrays and index variables;
however, its scope is limited to loops that have
very restricted structure. When outside this par-
ticular domain, the algorithm provides no use-
ful information about the variables.

1.1 New Alias Analysis for GCC

There are two approaches we could have taken
to decide what to add to GCC: a top-down ap-
proach: search the literature for the latest hot
algorithm or a bottom-up approach: address
some obvious shortcomings in GCC. We de-
cided on the latter approach.

The shortcomings we decided to address are:

• All of the aliasing in GCC is only done
on small units of analysis, such as ba-
sic blocks, single loops, or at most, sin-
gle functions. This narrow focus is his-
torical, GCC was originally a line-at-a-
time compiler that has since evolved into
function-at-time-compiler. However, C,
C++, Java, and ObjC are file oriented lan-
guages where a single file may contain
many closely related functions. There are
three file level targets to look at:

– Most files contain a significant num-
ber of local functions. Aggressive in-
lining eliminates the need for some



GCC Developers’ Summit 2005 • 17

of the information that interproce-
dural alias analysis could provide.
However, it is not desirable to inline
everything, so opportunities for more
precise alias information may be lost.

– There are a significant number of
variables that are defined at the file-
local level. A file-at-a-time analysis
allows these variables to be analyzed
in a limited closed world framework.

Function-at-a-time compilation
forces these variables to be handled
as if they were global variables
with a localized name. However,
file-at-a-time analysis, for those
static variables that do not escape
the file, analyzes their entire lifetime
before the functions that use them
are compiled.

– There are a significant number of
types whose scope can be deter-
mined to be local to the file. A
file level approach to any variable of
one of these types provides limited
closed world analysis for these vari-
ables.

• Structures are handled poorly. At least for
the purposes of aliasing, an assignment to
any element of a structure is modeled as a
kill of the entire structure.2

The underlying analysis algorithm in our ap-
proach is rather straight forward. However, the
implementation required significant engineer-
ing because the correctness of this analysis de-
pends on seeing theentire compilation unitat
one time. While this is routine in most produc-
tion compilers, it had never been attempted in
GCC and required significant re-engineering of
several components to accomplish this goal.

2This problem has been addressed in 4.1.

1.2 The Algorithms

There are five kinds of analysis that are per-
formed by this pass. All of them share a sin-
gle scanning pass of the intermediate code and
declarations. Data structures are built during
the scan, and in some cases the further analysis
is performed on the data structures.

The scope of our framework is an entire com-
pilation unit. The method of attack we have
chosen is to use flow-insensitive interprocedu-
ral techniques, and apply them to variables as
well as types. Several of the problems deal ex-
plicitly with structures and inheritance but in
all cases we aggregate arrays into single blobs.
The worst case time and space are associated
with number of functions times the number of
static variables, which is easily a manageable
quantity.

1.2.1 Addressable and Readonly Analysis
for Static Variables

GCC associates anaddressable bit with
each variable. This bit is set whenever the ad-
dress of the variable is actually needed. For
variables where this bit is clear, more aggres-
sive transformations can be performed. In the
past this bit has only be considered valid for lo-
cal variables since it was not possible to see the
entire usage of a variable with larger scope.

By analyzing an entire compilation unit before
the individual functions are compiled, all of ad-
dressing operations associated with static vari-
ables can be seen. Any static variables that have
no addressing operations have their addressable
bit cleared. This enables the compiler to deter-
mine that the address is not needed, allowing
further optimization of these variables.

Likewise, we also track assignments to static
variables, and any static variable that is not ad-



18 • Compilation Wide Alias Analysis

static int foovar;

void func1()
{

return foovar + 6;
}

int bar()
{

func1();
return foovar;

}

Figure 1: Example of static variable that is nei-
ther addressed nor clobbered

dressable and has no stores to it aside from the
static initialization are markedreadonly .

All of this information can be gathered with a
single scan of the entire compilation unit. None
of this requires any type of propagation or deep
analysis.

1.2.2 Type Escape Analysis

Types, especially complex ones, can be ana-
lyzed in a manner similar to what is done with
static variables. If no instance of a typet es-
capes from the compilation unit, it is possible
to improve the compilation of all instances of
t .

There are many ways that a typet can escape
a compilation unit:

• An instance of a pointer tot can be a pa-
rameter or return type of a global function.

• An instance of a variable of typet can be
a global variable.

• A pointer tot can either be in a cast where
the other type is an opaque or general type
(such aschar * in C).

• An operation other than plus, minus or
times is applied to the pointer tot .

• A field is declared of typet in a record or
union with a type that escapes.

As with the pointer escape analysis, most of the
processing is a single pass that examines the en-
tire compilation unit. This is followed by a re-
cursive walk of all of the type trees. Note that
this analysis differs in a significant way from
the addressable analysis in Section 1.2.1. In the
analysis here, a type does not escape if an in-
stance of the type has its address taken, it only
escapes if that address escapes the compilation
unit or is cast to or from escaping type.

Two very important special cases are made with
respect to the flow-insensitivity of this algo-
rithm. These are flow-sensitive processing, but
limited to flow within a single basic block:

• The result of any function with theECF_
MALLOCflag set is exempted from the
cast rule. This flag corresponds to func-
tions that are likemalloc , and return new
memory.

• The parameters passed to functions with
the ECF_POINTER_NO_ESCAPEflag
set (such asfree ) are exempted from the
cast rule. This flag corresponds to func-
tions that guarantee the pointers will not
escape.

These very common cases allow objects to be
allocated and freed without being marked as es-
caping.

1.2.3 Structure Analysis

GCC currently makes very pessimistic assump-
tions about accesses to structures, records and



GCC Developers’ Summit 2005 • 19

unions. GCC does not make effective use of
type and structure layout information in decid-
ing if a store to one structure or field can effect
a pointer to another record.

There is a very powerful assumption that is con-
sistent with the language semantics of C, C++
and ObjC3 that make it possible to be aggres-
sive about disambiguating structure references.

Assume that you have a pointerp to
object o. There are a limited set of
operations that can be performed on
p. Namely p can be used to refer-
ence anything withino but it cannot
be used to reference objects beforeo
or aftero in memory.

Thus, if the address of a fieldf is
taken, no other fields at the same level
or at outer levels within that record
can modified through the pointer&f .

However, if f1 is itself a record or
union within f , the pointer&f can
be used to access any fields declared
within f1 .

This forms the basis of a simple analysis: mark
a field f if it has its address taken within a
record. If f or any of its containing records
do not have their address taken, then stores
through pointers of typetf (wheretf is the
type of f ) cannot modify any record that con-
tain f .

There are two boundary cases:

• If type t escapes, all fields withint es-
cape.

• If type t escapes, all supertypes oft es-
cape.

3Since Java and Fortran do not allow address to be
explicitly taken, they are free of any of these problems.

As with the previous analysis problems, this al-
gorithm consists of scanning of all of the op-
erations in the compilation unit followed by
modest amount of post-processing. The data
structure used is similar to the current sets in
alias.c with two exceptions:

• For this analysis, structure and union types
are only represented if they do not escape.
If they do escape, the analysis falls back
on the existing code.

• For this analysis, for the types that are rep-
resented, the only fields listed as conflict-
ing within the type record are those who
have their address taken (and their sub-
types). Inalias.c , all fields that are
accessed in the current function are listed
and are assumed to cause conflicts.

These differences are significant:alias.c
pessimistically assumes that every field that is
referenced can cause a conflict, unless proven
otherwise. Here, we optimistically assume that
a field can cause a conflict only if there is evi-
dence of the address being taken or the record
type escapes the compilation unit. This pro-
vides for a much smaller potential set of con-
flicts.

1.2.4 Call Side Effect Analysis

For functions within the compilation unit, it is
possible to summarize some of the effects that
a call to that functionmayhave, namely which
static variables may be read and which may be
modified. Only static variables that are not ad-
dressable are considered for the analysis.

The algorithm consists of four phases:

1. A scanning phase which processes all if
the intermediate code and declarations.



20 • Compilation Wide Alias Analysis

The output of the phase is a pair of bit vec-
tors for each function. The first bit vector
describes the set of variables locally read
and the second describes the set of vari-
ables locally stored. In addition, there is
a bit vector that contains the universe of
static variables that this analysis is applied
to. Any static variable that has its address
taken or has the used attribute is excluded
from this set.

2. An analysis of the call graph of the com-
pilation unit. The structure of the infor-
mation being propagated through the call
graph is such that any information that
reaches any node that is in a cycle in the
call graph reaches all nodes in that cycle.
Thus, it is profitable to use Tarjan’s depth
first cycle reduction first to build a derived
acyclic graph.

3. Propagation of the information produced
in the first step along the derived graph
of the second step. This produces two
bit vectors for each node in the reduced
graph: one for the variables that may be
read and another by the set of variables
that may be written by executing a call to
one of the functions represented by that
node.

4. Expansion of the information into a form
that is acceptable to the rest of the compi-
lation unit. All of the bit vectors are stored
with bits indexed by theDECL_UIDfield.
However, the APIs used at the SSA level
are based on thevar_ann UID field.

Steps 2 and 3 are required because it is not
enough to just understand the potential side
effects of an immediate callee,a, a correct
picture can only be had processing all ofa’s
callees and, recursively, the callees ofa’s
callees. For this analysis, the more functions
that are contained in the compilation unit, the
more precise the information will be.

Of course most compilation units do not con-
tain the entire program so conservative approx-
imations must be employed for the parts of the
program that are not available. Calls to func-
tions outside the compilation unit fall into two
categories, ones whose side effects are under-
stood, and everything else. Calls to the first
category generally do not effect the side effects
since those that can possibly call back into the
compilation unit are excluded. For the every-
thing else category, it is assumed that a call to
any of these can read or modify all static vari-
ables. The need for such a pessimistic assump-
tion is that it must be assumed that there is a call
path from the external function being called to
every globally visible function in the compila-
tion unit. Functions are globally visible if they
areexternor have their address taken.

It is interesting to note there are a set of stan-
dard library functions that fail the well known
and understood test. The obvious ones are
bsearch and qsort . However, the GNU
C library contains obscure extensions that dis-
qualify a large number of functions from this
special treatment. The standard IO functions
like printf allow callbacks to be registered
for formatting certain data types. Since these
callbacks can, in general, call any function and
reference any variable, this analysis cannot take
advantage of these common functions. In prac-
tice, this extension severely limits the useful-
ness of the analysis. That said, this analysis
improves regular examples such as Figure 1
because the compiler no longer believes that
func1 clobbersfoovar .

1.3 Pure and Const Function Detection

With all of the scanning machinery in place it
is not difficult to detectpure andconst func-
tions during scanning.

Pure functions are functions which depend only



GCC Developers’ Summit 2005 • 21

on the arguments passed, and reading from
memory (they cannot write to memory).

Const functions are a subset of pure functions
which are only allowed to read from readonly
memory.

Currently this detection is done at the RTL
level. The processing is much the same as
was previously done at the RTL level with one
exception; Since all the processing is done at
once, it is possible to remove all dependencies
on function ordering on the processing: recur-
sive functions are handled properly and their
are no cases where a function is referenced by
another function before it is marked as being
pure or const .

2 The Engineering

The difficult part of the implementation was
convincing the existing front ends of the com-
piler that there had to be one specific time
when absolutely all functions and variables
were available. Prior to implementation, the
C++ frontend would often create variables or
functions in the middle of compilation, and
later shoehorn them into the callgraph. The cor-
rectness of this analysis depends on seeingev-
erythingbecause, for instance, if the one miss-
ing fragment is the one place that takes the ad-
dress of a variable, that address has still been
taken and can be spread throughout the entire
program.

The task of making the front ends give up all of
the secrets up front fell on Jan Hubicka of SuSE
Labs. He had been implementing an interpro-
cedural pass analysis (IPA) framework to facil-
itate CFG-aware inlining and was interested in
more clients. As with many things in GCC, we
did not understand the magnitude of the hid-
ing problem until we were both well into im-
plementation. As it turns out, inlining is not a

particularly good test to determine if you are re-
ally getting the front ends to behave because the
inlining will be correct even if you miss a few
functions or variable declarations. For more
sophisticated analysis, promises made must be
kept.

However, Jan, with the help of many other peo-
ple was able to get all of the front ends to be-
have.

2.1 Whole Program Analysis

In theory these analysis algorithms would work
with no further modification when applied in
whole program mode. In this mode, all of the
modules are compiled at one time. Variables
and functions that are declared global in a nor-
mal computation are converted to static vari-
ables.

In practice whole program mode still needed
a lot of engineering. The problem is the way
types are represented at the top level, especially
in C and C++, which do not have a formal mod-
ule system. It is perfectly legal to have to two
types declared with the same name but in some
modules the types have one representation and
in other modules have a second representation.
What is missing from whole program mode
is a pass that performs type unification across
all the instances of the types. Without such
a mechanism, the whole program mode likely
contains many latent bugs.

For this analysis, we implemented the most
rudimentary type unification system. This was
sufficient for our purposes, but should not
be considered a blueprint for what is really
needed, in that if two types do not unify, the
system just assumes that there is no information
available about the variables of those types.



22 • Compilation Wide Alias Analysis

2.2 Enhancements to the Analysis

The analysis algorithms discussed above are
quite simple. All involve only a scanning of
the intermediate code followed by some simple
data reduction. There are ways of enhancing
them:

SSA Form All of the problems discussed
above could benefit by performing con-
stant propagation and dead code elimina-
tion before applying the analysis. In the
context of the existing GCC infrastruc-
ture this involves converting the interme-
diate code to SSA form before applying
the analysis.

However, it is difficult to have all of the
functions in SSA form at the same time
because of an unfortunate data structure
decision. There is a constraint that the
var_ann UID field be densely packed
for each function. The current SSA builder
does this, but in the process renumbers
this field for the static and global vari-
ables also. Thus, SSA form, with its cur-
rent datastructures cannot exist simultane-
ously for all functions in the compilation
unit. This will be fixed in either 4.1 or 4.2
which will allow a richer set of analysis
and transformations to be done at the IPA
level.

Types v.s. ValuesType escape analysis (Sec-
tion 1.2.2) and structural analysis (Sec-
tion 1.2.3) could both benefit by perform-
ing the analysis over each individual vari-
able. It is not always true that all of the
instances of a type are connected and par-
titioning the variables into disconnected
components could allow better informa-
tion to be obtained for some partitions that
assuming the worst for all partitions.

This is clearly true for some of the
SPEC2000 benchmarks. Some of them

contain places where a variable of a
pointer typept is converted frompt to
a char * and then back a different vari-
able of typept . There are no bad op-
erations performed on the value while it
is a char * and this could be easily de-
tected with a flow-insensitive algorithm,
especially one run over the intermediate
code in SSA form.

While somewhat odd at the source level,
this kind of casting code may be common
after inlining. If a variable of typept is
passed to a function expecting achar *
and that function is inlined, then the same
code would exist (depending on what the
function body did to the variable) as in the
SPEC benchmarks.

3 Transformations

We have implemented a number of transforma-
tions based on this analysis. There are many
other possibilities.

3.1 Call Clobber Analysis

Using the side effect information that we ob-
tain in Section 1.2.4, we are able to re-
move many static variables from the call clob-
ber sets of function calls. This has re-
quired a certain amount of reengineering of
the tree-ssa-operands: add_call_
clobber_ops since the recently added cache
was not call site specific.

3.2 Static Variable Promotion

In the past it has not been possible to promote
a static variable to a register. Each load or store
to the value has required a memory reference.



GCC Developers’ Summit 2005 • 23

Under certain conditions this is neither neces-
sary nor desirable. The side effect information
in Section 1.2.4 provides enough information
to decide if it is safe to promote a static vari-
able to a register. It also provides enough infor-
mation to determine at which function calls the
variable must be stored back before the call or
reloaded after the call.

The only other remaining issue is if it profitable
to promote a static to a register:

• Statics with thereadonly attribute are
not promoted since it was considered bet-
ter to simply teach constant propagation
to replace the loads with references to the
constant value.

• Arrays are not promoted because the cost
of loading or storing the large aggregates
makes them not profitable in almost all
cases. We have considered adding code
to the scan all of the references and if the
only constants are used for the indexing to
consider promotion.

• Non-readonly scalars are always pro-
moted.

• Aggregates whose type passes
tree-sra: sra_type_can_be_
decomposed are promoted.

Promotion code for each variablev may be in-
serted into seven contexts in functionf :

• At the entry of the function,v is loaded
into virtual registerr .

• The code that loadsv is replaced with
code that copies fromr .

• The code that storesv is replaced with
code that copies tor .

• If there were any stores tov in f , r is
stored tov before any function call.

• After any function call that may modifyv ,
r is reloaded fromv .

• If there were any stores tov in f , r is
stored tov before any return.

After this promotion code is added, SSA form
is then built for the registers. The cases cover
the entire functionf , not just where thev was
live. An enhancement to dead code elimination
removes the live ranges that were not necessary.

3.3 Enhanced Alias Analysis

A function has been added which takes a record
type and a field type, returns true if the store to
a pointer to the field type can not clobber the
record type.

This has been integrated at the tree-ssa level
in tree-ssa-alias.c: may_alias_p
and at the RTL level in alias.c:
nonoverlapping_memrefs_p .

No changes to the underlying representation
of aliases has been done, nor have any of the
clients of alias analysis been modified in order
to support this enhancement.

4 Results

The performance for the call clobber analysis
and static promotion have been modest. They
essentially provide slightly better code but the
situations where either is a critical problem are
rare. Both of the optimizations are crippled
because of theenhancementsto libc . Most
large software projects contain debugging code
in a large percentage the functions. Having to



24 • Compilation Wide Alias Analysis

make the most pessimistic assumptions about
such code because of these rarely used en-
hancements seems like something that should
be considered.

4.1 Results for Enhanced Alias Analysis

The enhanced alias analysis currently has a lim-
ited effect at the SSA level because it has been
difficult to fit this kind of information into the
alias sets of the current compiler. This will
change as the underlying representation is en-
hanced.

At the RTL level, the story is completely differ-
ent. Turning on the alias analysis has an ef-
fect of ±20%. Small compilation units tend
to improve and large compilation units tend
to degrade. On standard benchmarks, such as
Spec2000, some benchmarks improve signifi-
cantly: 171.swim improves 10%,179.art
improves 5%. The rest are a mixed bag. Some
improve by 1%, some degrade by roughly 1%.

While at first glance this may seem problem-
atic, it is actually really good news. Poor anal-
ysis tends to make a compiler behave as if it is
a machine with a very viscous lubricant. As the
aliasing improves, the machine parts are able
to spin faster and accomplish more. GCC was
developed with either no or very poor alias-
ing information available. It is not surprising
that the transformation that depend on aliasing
make globally poor decisions when suddenly
given more freedom to work than they were de-
signed or tuned for.

Particularly hard hit are scheduling, register al-
location and spilling. At no point does the
scheduler have any understanding of how many
registers the machine has or how many it is cur-
rently using. It simply tries to separate the loads
from their uses without any understanding of
the consequences. The register allocation is

also a problem because there is no rematerial-
ization available to reduce register pressure and
the spilling choices are generally not good.

For small programs this is not a problem be-
cause, even with very good information, there
is simply not enough code to pile on a lot of
live ranges. However, larger compilation units
provide a lot of opportunities for procedure in-
lining to bulk up the inner loops with a lot of
instructions that can be moved around. With no
controls on how much to do, it is inevitable that
better information produces poorer results.

5 Conclusions

The future of the alias analysis described here
is not clear. Danny Berlin is working on a more
precise algorithm which tracks values rather
than types. This should provide still better alias
information. Until the tree-ssa alias representa-
tion is enhanced, it is unlikely that Danny’s al-
gorithm will show much at the tree level; at the
RTL level the better aliasing may exacerbate
the problems discovered with this more modest
analysis.

However the cost of that analysis has yet to be
measured. If the time and space are close to this
algorithm, then a few of the edges that are not
covered in that algorithm will be mined from
this algorithm and the code will be abandoned.
However, it is more likely that this will prove
to be much cheaper (since this just consists of a
scan of the program followed by a modest num-
ber of bit vector operations) and that this will
become the default technique at-O1 .

What is clear is that the RTL level squanders
a lot of performance because it does a bad job
of managing the resources available on the ma-
chine. When this is fixed, we should see sub-
stantial improvement.


