
Proceedings of the
GCC Developers’ Summit

June 22nd–24th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Eric Christopher,Red Hat, Inc.
David Edelsohn,IBM
Richard Henderson,Red Hat, Inc.
Andrew J. Hutton,Steamballoon, Inc.
Janis Johnson,IBM
Toshi Morita
Gerald Pfeifer,Novell
C. Craig Ross,Linux Symposium
Al Stone,HP
Zack Weinberg,Codesourcery

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Improving GCC instruction scheduling for IA-64

Andrey Belevantsev
ISP RAS

abel@ispras.ru

Alexander Chernov
ISP RAS

cher@ispras.ru

Maxim Kuvyrkov
ISP RAS

mkuvyrkov@ispras.ru

Vladimir Makarov
Red Hat

vmakarov@redhat.com

Dmitry Melnik
ISP RAS

dm@ispras.ru

Abstract

The instruction scheduler is one of the weak-
est points of GCC on IA-64 architecture. This
paper will describe an ongoing project for im-
proving GCC instruction scheduling for Ita-
nium. We aim at adding support for IA-64 con-
trol and data speculation to GCC, doing this
similarly to the existing implementation of in-
terblock motions. Our work on this issue forces
us to address weakness of the alias analysis
used in the scheduler. Absence of the address
displacement on IA-64 makes the problem even
more relevant. We suggest the following im-
provements: 1) propagation of points-to infor-
mation from tree-ssa to RTL for pointers, and
2) tracking pointer arithmetic, which is per-
formed for addressing non-pointer variables, in
alias.c .

1 Introduction

The Itanium architecture (known as IA-64) was
named EPIC by Intel, which stands for Explic-
itly Parallel Instruction Computing. The pro-
gram compiled for IA-64 should have instruc-
tion level parallelism (ILP) explicitly exposed

by the compiler. For this purpose, the archi-
tecture provides massive resources such as a
huge register file and many execution units. IA-
64 also supports features for enhancing ILP,
such as data and control speculation, predica-
tion, and rotating registers.

An instruction scheduler is a component of the
compiler that rearranges instructions to achieve
better performance. Aggressive global schedul-
ing is a key to utilize Itanium ILP features
[Muthukumar05]. The GCC scheduler doesn’t
fully obtain this goal. The current approach is
not powerful enough to express much ILP, and
it doesn’t support IA-64 features such as spec-
ulation or rotating registers.

This paper presents an ongoing project aimed at
improving GCC instruction scheduling for Ita-
nium. The project is sponsored by the Gelato
Federation. The primary goal of the project is
to add support for control and data speculation
to the scheduler. To benefit from this improve-
ment, a problem of weak RTL alias analysis on
IA-64 should be also addressed. The problem
is important because there is no “base + off-
set” addressing mode on Itanium. We suggest
a two-step solution: propagating points-to in-
formation from the Tree SSA to the RTL, and
tracking pointer arithmetic withinalias.c .

• 1 •



2 • Improving GCC instruction scheduling for IA-64

The third small improvement, which we sug-
gest, is using standard GCC probability analy-
sis instead of the current historical implemen-
tation used by the scheduler.

The rest of the paper is organized as follows.
Section 2 contains the description of the cur-
rent GCC scheduler. Sections 3 and 4 describe
in detail our work on supporting speculation
and enhancing alias analysis, respectively. Sec-
tion 5 mentions the changes in probability anal-
ysis. Our experimental results are sketched in
Section 6. Section 7 outlines the directions for
the future work.

2 GCC instruction scheduling

The GCC instruction scheduler is an adopted
version of the interblock scheduler from IBM
Haifa Labs. Scheduling pass is performed
twice, before and after register allocation. The
first pass does interblock scheduling, while the
second pass schedules extended basic blocks
(EBBs) on Itanium and single basic blocks on
other platforms.

DFA resource

modeling
ia64.md

List scheduling
haifa−sched.c

Bundling
ia64.c

EBB driver

sched−ebb.c

Interblock driver
sched−rgn.c

1st pass:

2nd pass:

register allocator

reload

Figure 1: GCC instruction scheduler.

Scheduler infrastructure is shown in Figure 1.
Generic routines doing list scheduling ma-
nipulations for the basic block are located

in haifa-sched.c . The common part
of data dependencies calculation is done in
sched-deps.c . Routines for interblock and
EBB scheduling are insched-rgn.c and
sched-ebb.c , respectively. The entry point
for the scheduling passes is theschedule_
insns routine. It calculates data depen-
dency info, computes “regions” for interblock
scheduling, and schedules every block in the
region via schedule_block . The sched-
uler usessched-int.h for communication
between the components. Pieces of logic ab-
stracted away from the Haifa part to either in-
terblock or EBB parts are accessed through
hooks from thecurrent_sched_info struc-
ture.

The Haifa scheduler manipulates instructions
using list scheduling (see Figure 2). Firstly, the
instruction priorities are calculated basing on
data dependencies. Scheduling is started with
a list of ready and pending instructions. The
list is sorted according to the set of heuristics.
An instruction is chosen from the ready list and
scheduled or queued, if there is not enough re-
sources to issue it. Pending instructions are
moved to either the ready list or the queue as
their dependencies are satisfied. After schedul-
ing the register live information is updated.

The scheduler communicates with the backend
via various hooks. The backend could adjust
instruction cost and priority, reorder list of in-
structions ready for scheduling, etc. The sched-
uler uses a pipeline hazard recognizer to ask
for a possibility of issuing an instruction on the
given cycle. The pipeline hazard recognizer is
based on a deterministic finite state automaton
(DFA). On Itanium, the scheduler uses a non-
deterministic version of the automaton for the
interblock and the EBB passes. After EBB is
scheduled, its instructions are bundled by us-
ing deterministic automaton. The bundling al-
gorithm uses dynamic programming for find-
ing the best sequence of the bundles. The algo-



GCC Developers’ Summit 2005 • 3

schedule_block() {
/* queue - ready, but could not be
scheduled on this cycle
ready - could be scheduled now */

foreach (insn in the region)
if (new_ready (insn))

move insn to ready;

while (should schedule)
{

move insns from queue to ready;
while (could issue on this tick)
{

insn = choose from ready;
if (could schedule insn now)
{

schedule insn;
foreach (insn1 with resolved

dependencies)
if (new_ready (insn1))

move insn1 to queue or ready;
} else

move insn to queue;
}
goto next tick;

}
}

Figure 2: Haifa scheduler pseudocode

rithm performs the forward pass over the EBB
to find the sequence. Then the backward pass
performs actual inserting templates and NOPs
in the sequence.

3 Speculation support

3.1 Overview

Data and control dependencies limit freedom
of instruction movement. Using speculation al-
lows the compiler to overcome the dependen-
cies by moving a load through the ambigu-
ous store (doingdata speculation) or moving
a memory load across a branch (doingcontrol

speculation). Uses of such a load could also
be moved. These techniques provide the way
of hiding memory latency of moved loads and
reduce the execution time.

IA-64 architecture supports both control and
data speculations via separation of data loading
and possible exception handling. Speculative
versions of load instruction are supported. The
control speculative (or justspeculative) load
defers possible exceptions. The data specula-
tion (oradvanced) load saves the address of the
load. Later on,check instruction detects de-
ferred exception/possible store conflict and ei-
ther reissues the failed load or branches to the
recovery code. The examples of IA-64 con-
trol and data speculation are shown on Fig-
ure 3 (some instruction completers and nops are
omitted for clarity).

Data speculation:
Before After

adds r15=r16,r14
st8 r14=[r14]
nop.i
ld8 r18=[r19];;
st4 r15=[r33]
nop.i
ld8 r14=[r18];;

ld8.a r18=[r19];;
adds r15=r16,r14
nop.i
st8 r14=[r14]
ld8.c.clr r18=[r19]
nop.i;;
ld8 r14=[r18]
st4 [r15]=r33

Control speculation:
Before After

mov r1=r42
adds r14=1,r8;;
cmp4.ltu p6,r14
(p6) br.cond bd0
ld4 r14=[r33];;
add r14=r14,r8

adds r14=1,r8
ld4.s r15=[r33]
mov r1=r42;;
cmp4.ltu p6,r14
(p6) br.cond bf0
chk.s.m r15,b40;;
add r15=r15,r8

Figure 3: IA-64 control and data speculation

When the advanced load is executed, the load



4 • Improving GCC instruction scheduling for IA-64

address is recorded in a hardware table called
ALAT (Advanced Load Address Table), which
is indexed by the destination register num-
ber. Stores writing to the overlapping address
and/or advanced loads to the same register re-
move previously added entry. When a check
instruction with the same register number is ex-
ecuted, the ALAT is searched for the entry in-
dexed by this register. If the entry is not found,
speculation is considered failed and its results
should be recomputed.

When the control speculative load is executed,
the Not A Thing (NaT) bit is set on the desti-
nation register, if an exception occurs, signal-
ing that the exception is deferred. The NaT
bit could be set for each general register. If
the NaT bit of a register is set, it is propagated
through dependent computations with this reg-
ister. The control speculative check instruction
branches to recovery code, if the NaT bit of the
destination register is set.

3.2 General approach

We propose a notion ofspeculative blocksfor
modeling speculation in the scheduler. Some of
the instructions could start such a block (mem-
ory loads). Then more instructions could be
scheduled speculatively (uses of these loads).
Finally, special instructions should end a spec-
ulative block (check instructions). Thus, each
speculative load and check form a block, which
could optionally include uses of the load.

We extend both instruction and dependence
data to reflect their speculative properties. The
speculative flag of data dependence means “this
should be done to overcome me,” while specu-
lative status of an instruction means “this is a
possible way of scheduling me” (see Table 1
for examples). The status could also mark out
the instructions, which are more preferable for
speculation, or should not be speculated at all.

The instruction flag is placed inhaifa_insn_

data structure. A speculative status of a de-
pendence could be placed insideLOG_LINKS.
We have chosen to create a new kind of depen-
dence,INSN_DEPS, to be used only by the
scheduler and to keep the new flag in it. This
solution allows more freedom of experiments
with the patch. After the patch is finished, this
part can be rewritten to useLOG_LINKS.

The life cycle of a speculative instruction is as
follows. Firstly, theINSN_DEPSdependen-
cies are calculated together withLOG_LINKS.
An instruction (together with its dependen-
cies) acquires its speculative status in thenew_
ready function. The status affects the rules of
choosing an instruction from the ready list for
scheduling. Later, when the instruction is se-
lected for speculative scheduling, it can be still
last-minute rejected by the backend (e.g., when
there are too many subsequent speculations). If
the instruction is scheduled, its speculative sta-
tus is cleared, and other instructions (e.g., its
uses) can acquire speculative status, again in
new_ready .

Speculative instruction is scheduled as follows.
If the instruction is supposed to begin a specu-
lative block, it is split on a speculative part and
a check part (or simply check). Both the back-
ward and forward dependencies of the origi-
nal instruction are moved to the check, and
a dependence between the speculative and the
check part is added. The speculative instruction
is scheduled on the current cycle. The check is
marked as an instruction for the end of the spec-
ulative block, and scheduled later as usual.

3.3 Filling the ready list

An instruction could be placed in the ready
list either when scheduling is started, or when
other instruction is scheduled and some data
dependencies are satisfied. Validity of this ac-
tion is checked via thenew_ready function.



GCC Developers’ Summit 2005 • 5

Table 1: Speculative status examples

Speculative status Dependence Instruction
is: could be broken with: could be:

BEGIN_DATA advanced load an advanced load
BEGIN_CONTROL speculative load a speculative load

BE_IN_DATA uses of advanced load a use of advanced load
BE_IN_CONTROL uses of speculative load a use of speculative load

FINISH_DATA — an advanced check
FINISH_CONTROL — a speculative check

HARD_DEP could not be broken could not be speculative
WEAK_DEP preferable for speculationpreferable for speculation

An instruction could be either from currently
scheduling basic block or from another one. In
the first case, the instruction may have no de-
pendencies, and thus it is ready for scheduling.
If the instruction has unsatisfied dependencies,
it is a candidate for data speculation. It may
either open a new speculative block or go in-
side the existing one. The latter case happens
when the instruction depends only on checks,
i.e., it consumes data only from the speculative
instructions.

Data speculation would be valid iff the specula-
tive motion preserves the correctness of register
operations. Consider the following code snip-
pet:

<current scheduling point>
add r3 = r3, r4
st [r6] = r3
ld r4 = [r5]

A store to r4 may not be moved specula-
tively to the current scheduling point, because
this move would violate the anti dependence
betweenld and add instructions. However,
only true dependencies could be overcome with
speculation. To reflect this issue, the specula-
tive status is assigned to the true dependencies
only. Besides this, if the dependence isweak

(i.e., unlikely) orhard (very probable), its spec-
ulative status (and thus its motion) is encour-
aged or disallowed accordingly.

The second case is checking the candidate in-
struction from other basic block for the valid-
ity of interblock motion. When the candidate
has no dependencies, it is placed in the ready
list for regular scheduling, if it is exception-free
instruction. This is not the case with memory
loads, which are exception-risky. Such instruc-
tion will be considered for control speculation,
if its execution probability is high. In this case
the instruction will start the control speculative
block.

3.4 Sorting the ready list

After the ready list is filled with the appropriate
instructions, it is sorted according to the set of
heuristics of the Haifa scheduler and the back-
end. Then themax_issue function is used to
select from the list the first instruction, which if
scheduled, will allow scheduling the maximal
number of other instructions. This instruction
is determined with limited depth backtracking
using DFA interface.

Speculative instructions affect both the sorting
rules and themax_issue logic. The follow-



6 • Improving GCC instruction scheduling for IA-64

ing heuristics are used for prioritizing specula-
tive instructions in these functions:

• prefer a non-speculative instruction to
speculative one;

• prefer a data speculative instruction to
control speculative one;

• if both instructions are data speculative,
prefer one with a smaller number of de-
pendencies; break ties with preferring one
with a greater number of weak dependen-
cies (Section 4.4 explains when the depen-
dencies are considered weak);

• if both instructions are potential con-
trol speculative ones, prefer the one with
greater execution probability.

3.5 Backend support

Changes in target.md file are required to
support generation of speculative instructions.
In ia64.md , the speculative load is rep-
resented with[parallel (set reg mem)

(unspec lda/ldc)] pattern. A check is rep-
resented with[parallel (set reg mem)

(unspec reg)] pattern. Theunspec part
is used as a marker for a speculative instruc-
tion. It also prevents optimizers from breaking
theparallel block. Usingset allows back-
end to treat the instruction as an ordinary load,
for example when bundling.(unspec reg)
creates the dependence between the load and
the check instructions. A latency of the check
instructions is set to zero in DFA description.
This allows other instructions to be placed in
the same bundle as checks.

Besides, a number of hooks is added for proper
cooperation between the scheduler and the
backend. The hooks are as follows:can_be_

speculative_p(insn,status) checks for

possibility of an instruction to be speculative
with the given status;generate_recovery_

code(insn,status) splits an instruction on
the load and the check part with the given sta-
tus.

3.6 Current implementation status

We have implemented the general infrastruc-
ture for the speculation support. As of now,
speculation of the integer and the float loads,
and speculation of the predicated instructions
(COND_EXEC) are supported. The current im-
plementation does not support generation of a
full recovery code. This disallows for spec-
ulating uses of control/data speculative loads.
The control speculation is also not fully correct
because ofchk.s instruction, which requires
the address of the recovery code to be speci-
fied. The current implementation specifies the
address with zero offset (i.e. jump on self).

We have improved region formation in the in-
terblock scheduler. The existing algorithm will
only form a non-trivial acyclic region for a
function that has no loops. If the function has
a loop, then non-trivial regions can be formed
from the loop body, and all other basic blocks
will form single block regions. This signifi-
cantly reduces the possibilities for interblock
motions.

We have fixed this approach as follows. When
the loops are selected, we perform additional
traverse of the flow graph in topological order
and search for the basic blocks that are not yet
assigned to any region. We mark these blocks
with their region numbers as follows. If all pre-
decessors of blockX are assigned to the same
regionR, thenX is also assigned toR. If X be-
longs toR, and its successorY doesn’t belong
to R, then all successors ofX should not belong
to R. The process of assigning regions to blocks
is repeated until no changes are observed.



GCC Developers’ Summit 2005 • 7

4 Memory disambiguation support

4.1 Overview

To benefit from data speculation support, good
memory disambiguation is required. This
means an aggressive alias analysis is to be per-
formed. Furthermore, speculative scheduling
makes demands forhintsfrom aliasing machin-
ery. The hints may be given for such pairs of
memory references, which cannot be proven
independent, but likely are (see Section 4.4).
This technique is extremely useful when in-
terprocedural analysis may not be performed
[Muthukumar05].

The alias analysis on IA-64 is weakened by
the absence of displacement. For such archi-
tectures, GCC uses pointer arithmetic to com-
pute load and store pointers for e.g. array ref-
erences. Then GCC fails to disambiguate these
references because of different base registers.
Consider the following example (inspired by
[Gupta03]):

void foo (int ∗a, int c) {
a[1] ∗= c;
a[2] += c;

}

The addresses of array elements are computed
as shown below. This prevents GCC from
disambiguating memory stores tor341 and
r346 , because the GCC aliasing doesn’t track
pointer arithmetic.

r342 [a] = r328 [sfp]
r341 = r342 + 4
<... >

r346 [a] = r328 [sfp] + 8

We implement a two-step solution for the prob-
lem. The alias analysis used in the scheduler

is improved by propagating points-to informa-
tion from the Tree SSA to the RTL level. Ad-
ditionally, tracking of alias arithmetic is per-
formed on the RTL level. Aliasing machinery
also gives hints to the scheduler using a notion
of weakdependency.

4.2 Propagating points-to data

Propagation of alias information needs sup-
port both on the Tree SSA and RTL levels.
Points-to information gathered on tree-ssa for
a pointer is merged from all SSA versions of
the pointer. If there is a version of the pointer
that hasn’t points-to data computed, or thept_
anything flag is set, then the flag is also set
on merged points-to set. Resulted set is saved
in a hash table for the later use on the RTL level.
This work is performed when quitting from the
SSA form, so additional may alias pass is in-
serted beforepass_del_ssa .

On the RTL level, tree expressions are asso-
ciated with registers addressing MEMs. The
links to the original tree expressions are
used for disambiguation of MEMs in the*_
dependence functions. Two cases are sup-
ported: both MEMs have theREG_EXPRlinks,
or one MEM has theREG_EXPRlink, and
other one has theMEM_EXPRlinks. This al-
lows to disambiguate the following cases:

• ptr->field and *p , if points-to sets
for ptr andp doesn’t overlap;

• arr[index].field and*p , if points-
to set forp doesn’t containarr ;

• var.field and*p , if points-to set forp
doesn’t containvar ;

• arr[index] and*p , if points-to set for
p doesn’t containarr .



8 • Improving GCC instruction scheduling for IA-64

More chances for disambiguation could be
brought up with using structure aliasing and
memory classes. The structure alias analysis
generatesstructure field tags(SFTs) for all in-
ner subobjects of a structure. The SFTs are kept
as “subvariables” of a structure variable and are
used to specify aliases with structure fields in
the points-to sets. This information is saved in
the hash table analogously to regular points-to
data. Theget_subvars_for_var routine
is patched to look up subvariables not only in
the var_ann field, but also in the hash table.
Then it is used on the RTL level for another
chance of disambiguation.

Using memory classes for disambiguation is
partly supported by GCC with disambiguating
global and stack variables. Thept_malloc
attribute may be also used for disambiguation
of stack and heap variables. Unfortunately, this
attribute is not properly propagated in the Tree
SSA alias analysis (as of March 2005).

4.3 Tracking pointer arithmetic

The patch targeted for tracking “base + offset”
arithmetic was suggested by Sanjiv Gupta in
2003 both on the GCC Summit [Gupta03] and
in the gcc-patches mailing list [GuptaGCC].
We use the infrastructure of the patch in our
experiments. The patch handles offsets within
lowermbits of abstract address value, wherem
equals to the bit size of theHOST_WIDE_INT
type. That is, on IA-64 the patch is able to dis-
tinguish up to 64 distinct displacements. Each
pseudoregister is mapped to anaddress de-
scriptor at each program point. This structure
contains a defining instruction for the pseudo
and the set of possible displacements (called
mod-k residues set,k = 2m) represented as a bit
set in a variable of theHOST_WIDE_INTtype.

During the analysis stage, address descriptors
are propagated through theSET andPLUS in-

structions, and merged in corresponding con-
trol flow points. Data flow information for
the given program point is represented as a
list of address descriptors and saved at the end
of each basic block. The lists are then used
when answering aliasing queries in thetrue_
dependence function. Disambiguation rou-
tine finds defining instructions for the MEMs,
computes valid data flow information for the
instructions, and checks if corresponding ad-
dress descriptors have the same base pseudo,
and their residues sets do not overlap.

The patch has two major pitfalls. First of
all, the algorithm suggested is very expensive.
Consider the following loop:

for (i) {
x = a[i − 1];
<... >
a[i + 1] = y;

}

The algorithm will iterate over this loop exactly
k times (64 times on IA-64), because on each
iteration mod-k residues set fori will change.
The patch tries to handle such situations with
looking at thePLUSinstructions where destina-
tion and first source registers are the same. This
doesn’t work as expected because different reg-
isters are commonly used for holding value ofi
on subsequent iterations. Second pitfall is that
the patch doesn’t handle auto increment expres-
sions, failing to adjust register value during data
flow analysis.

The scheduler works only with acyclic regions
of flow graph. Thus, data dependencies be-
tween loop iterations could be abandoned when
scheduling. In the example above, the sched-
uler doesn’t need to know thata[i-1] and
a[i+1] may access the same memory loca-
tions between iterations. It is sufficient to know
that these expressions are independent within a
single iteration. Using this idea, we have modi-
fied the algorithm of data flow analysis used by



GCC Developers’ Summit 2005 • 9

the patch. To minimize the number of required
iterations, we traverse the flow graph in topo-
logical order and propagate the data flow from
visited to unvisited nodes. In other words, we
don’t allow propagation of the data flow along
backedges. This allows to complete the data
flow analysis during one iteration, and com-
puted information is exactly what is needed by
the scheduler.

The patch was also fixed to handle auto in-
crement expressions. The algorithm used the
note_stores function to propagate the data
flow through an instruction. This function
doesn’t notice auto increments. We usefor_
each_rtx to find auto increments in RTX and
update data flow information. This change al-
lows to use the patch in all{true,output,
anti}_dependence functions.

4.4 Weak dependencies

As noted above, alias analysis could help
greatly to speculative scheduling with giving
hints for useful data speculation. The hints are
organized in the form of weak dependencies.
Weak dependency serves as an attribute of the
true dependency. The following hints are used
for deciding on weakness of a dependency:

• Two pointers have disjoint points-to sets,
but one of the sets has thept_anything
flag set (see Section 4.2);

• Two pointers are different function param-
eters;

• Two pointers have different bases, that are
different function parameters.

In contrast, a dependency should not be bro-
ken with data speculation, when two point-
ers are reported to have intersecting points-
to sets. This designates high probability of a

speculation failure. Other heuristics are pro-
posed in [Muthukumar05], but they are cov-
ered either with structure aliasing or with the
-fstrict-aliasing flag.

5 Probability analysis support

The interblock scheduler computes execution
probability of each basic block relative to each
other block when initializing data structures
of the region. Execution probability of basic
block X relative to block Y is used as a cut-
off when instructions from X are considered for
interblock motion into Y. Historically, evalua-
tion of the probabilities in the scheduler is very
inaccurate. Given basic block X, each outgo-
ing edge from X is considered to have equal
probability, if this edge doesn’t leave the re-
gion. If some edges from X leave the region,
then aggregate probability of taking these edges
is assumed 10%, and remaining 90% is again
distributed evenly among the rest of outgoing
edges.

We fix this situation by using GCC framework
for estimating execution frequency of a basic
block. This is possible either with profile infor-
mation (-fbranch-probabilities ) or
with prediction (-fguess-branch-prob ,
turned on at-O2 and higher). An old scheme
is used in all other cases.

Two hard-coded scheduler parameters influ-
ence the number of instructions considered for
interblock motions. These are maximal instruc-
tion latency (which is 3) and minimal probabil-
ity cutoff for basic blocks (which is 40%). A
bigger first parameter and a smaller second pa-
rameter make the interblock motion more ag-
gressive. We have introduced new scheduler
parameters for using instead of old hard-coded
values and adjusted the values according to the



10 • Improving GCC instruction scheduling for IA-64

results of the experiments. Increased mini-
mal conflict delay (up to 5–6) shows more in-
terblock motions than default value of three.
Lowering the probability cutoff to 25–30%
helps only when profile information is avail-
able.

6 Experimental results

Our work is based on HEAD 20050407 snap-
shot. This snapshot doesn’t allow us to test all
four proposed patches together. We need to
schedule additionalpass_may_alias just
before quitting the SSA form to perform prop-
agation of alias information. Unfortunately, it
is not possible to run alias analysis after ivopts,
because it is not always successful in correct
update of aliasing information. This should be
corrected soon by Diego Novillo. While the
bug is still in the mainline, we are testing only
speculation, pointer arithmetic, and probability
patch together.

Tables 2–4 show the results of SPECINT runs
with and without our patches. Base tuning
is -O2 , and peak tuning is-O3 respectively.
We have also tried the patches with tweaked
inlining parameters. We approximately dou-
ble the parameters, because aggressive inlin-
ing increases possibilities for speculation. In
the tables we use “spec” to denote the specu-
lation patch, “pa” to denote the pointer arith-
metic patch, “prob” to denote the probability
patch, and “inline” to denote the inlining patch.
The reference compiler results are denoted with
“ref.”

The tested patches do not contain improved re-
gion heuristic and do not use weak dependen-
cies as hints for speculation. The patches do
not improve SPEC results in average when used
as are. Tweaking inlining parameters allow
patches to show 0.8% speedup in average when

comparing to the tweaked compiler, and 1.97%
speedup when comparing to the reference com-
piler. When looking at-O3 results, it could be
noted that our patches smooth a negative effect
of aggressive inlining on certain benchmarks.
This is because automatic inlining is turned on
at -O3 .

Benchmark Old New Diff, %
164.gzip 622 619 –0.48
175.vpr 812 811 –0.12
176.gcc 915 912 –0.33
181.mcf 690 670 –2.90
186.crafty 862 858 –0.46
197.parser 717 719 +0.28
252.eon 646 649 +0.46
253.perlbmk 822 814 –0.97
254.gap 542 574 +5.90
255.vortex 883 890 +0.79
256.bzip2 671 669 –0.30
300.twolf 971 967 –0.41
SPECint_base2000752 753 +0.13

164.gzip 656 655 –0.15
175.vpr 829 824 –0.60
176.gcc 913 910 –0.33
181.mcf 693 685 –1.15
186.crafty 854 854 ~0.00
197.parser 772 774 +0.26
252.eon 655 654 –0.15
253.perlbmk 828 800 –3.38
254.gap 541 574 +6.10
255.vortex 893 901 +0.90
256.bzip2 674 674 ~0.00
300.twolf 970 964 –0.62
SPECint2000 763 763 ~0.00

Table 2: ref vs. spec+pa+prob, base=-O2 ,
peak=-O3

Table 5 contains newer results achieved for
SPECFP at-O2 on HEAD 20050503 snapshot.
In this table the probability patch is included in
the speculation patch, and the alias patch con-
tains both the pointer arithmetic patch and the



GCC Developers’ Summit 2005 • 11

Benchmark Old New Diff, %
164.gzip 620 620 ~0.00
175.vpr 808 810 +0.25
176.gcc 913 914 +0.11
181.mcf 686 684 –0.29
186.crafty 863 859 –0.46
197.parser 713 720 +0.98
252.eon 716 724 +1.12
253.perlbmk 819 816 –0.37
254.gap 539 574 +6.49
255.vortex 878 891 +1.48
256.bzip2 668 670 +0.30
300.twolf 970 968 –0.21
SPECint_base2000756 762 +0.79

164.gzip 655 656 +0.15
175.vpr 841 845 +0.48
176.gcc 899 900 +0.11
181.mcf 693 694 +0.14
186.crafty 863 857 –0.70
197.parser 772 778 +0.78
252.eon 750 755 +0.67
253.perlbmk 824 822 –0.24
254.gap 539 577 +7.05
255.vortex 889 907 +2.02
256.bzip2 680 681 +0.15
300.twolf 975 971 –0.41
SPECint2000 772 778 +0.78

Table 3: inline vs. inline+spec+pa+prob,
base=-O2 , peak=-O3

propagation patch. “Data” and “Control” de-
note the speculation patch with only data or
control speculation enabled, respectively. “All”
denotes the merged patch. The best achieved
results for SPECFP, which are at-O3 with only
the speculation patch enabled, and denoted as
“Best,” are provided for clarity.

7 Conclusions

In this paper we have presented the results
of the project of improving GCC instruction

Benchmark Old New Diff, %
164.gzip 622 620 –0.32
175.vpr 812 810 –0.25
176.gcc 915 914 –0.11
181.mcf 690 684 –0.87
186.crafty 862 859 –0.35
197.parser 717 720 +0.42
252.eon 646 724 +12.07
253.perlbmk 822 816 –0.73
254.gap 542 574 +5.90
255.vortex 883 891 +0.91
256.bzip2 671 670 –0.15
300.twolf 971 968 –0.31
SPECint_base2000752 762 +1.33

164.gzip 656 656 ~0.00
175.vpr 829 845 +1.93
176.gcc 913 900 –1.42
181.mcf 693 694 +0.14
186.crafty 854 857 +0.35
197.parser 772 778 +0.78
252.eon 655 755 +15.27
253.perlbmk 828 822 –0.72
254.gap 541 577 +6.65
255.vortex 893 907 +1.57
256.bzip2 674 681 +1.04
300.twolf 970 971 +0.10
SPECint2000 763 778 +1.97

Table 4: ref vs.inline+spec+pa+prob,
base=-O2 , peak=-O3

scheduling for IA-64 platform. We have chosen
to implement the framework for speculation
support as the main goal of the project. Other
infrastructure changes are needed to make this
framework profitable. The changes should im-
prove alias analysis on the RTL level. We pro-
posed to propagate points-to information from
the Tree SSA to RTL level, and to track pointer
arithmetic withinalias.c . The latter change
should compensate for the absence of displace-
ment on IA-64. During our work on the project
we have implemented some other scheduler im-
provements.



12 • Improving GCC instruction scheduling for IA-64

Benchmark Data Control Spec Alias All Best (Spec at-O3 )
168.wupwise +0.71 +1.43 +1.43 +1.66 +0.95 –0.47
171.swim –0.30 –0.30 +0.30 –0.44 –0.15 –0.15
172.mgrid 0.00 0.00 +0.30 +4.79 +5.09 –4.84
173.applu +0.24 0.00 +1.18 –0.71 –0.24 +0.95
177.mesa –1.09 0.00 +2.89 +0.14 +0.82 +1.73
178.galgel +2.51 –5.75 +2.51 –5.92 –3.41 +8.76
179.art +1.05 +0.06 –0.17 –0.06 +0.58 –0.23
183.equake –0.90 –0.23 –1.13 –0.23 –0.45 –2.24
187.facerec +0.19 0.00 –1.12 –3.16 –2.99 +2.87
188.ammp +18.84 +0.15 +18.84 –1.52 +16.87 +20.68
189.lucas +0.12 –0.12 –0.36 –0.12 0.00 0.00
191.fma3d +0.73 –0.36 +0.36 +0.73 +2.93 –0.72
200.sixtrack +2.43 0.00 +2.08 –1.04 +1.04 +3.16
301.apsi +1.12 –0.67 +0.45 –4.45 –3.13 +5.57
SPECfp2000 +1.71 –0.57 +1.89 –0.76 +1.14 +2.46

Table 5: SPECFP results at-O2 , % to the reference GCC

The current experimental results (yet with un-
finished patch) show that we have taken the
right direction when trying to get the perfor-
mance improvements for IA-64 with fixing in-
struction scheduling. We hope that our next
long term project in this direction will be imple-
menting a new interblock scheduler for GCC.
We think that the new scheduler should fol-
low one of DAG approaches with support of in-
struction cloning. The parts of the framework
we created in the current project will be reused
in the new scheduler.

8 Acknowledgments

We’d like to thank Vladimir Makarov for guid-
ing us in the wonderful world of GCC hacking.
This project would not exist without his con-
sulting. We would like to thank Diego Novillo
and James Wilson for answering our questions
and giving helpful comments. And we thank
the Gelato Federation and HP for giving us the

possibility to work on improving GCC and for
their attention to the GCC project.

References

[GCCInternals]http://gcc.gnu.org/
onlinedocs/gccint

[Gupta03] Sanjiv K. Gupta, Naveen Sharma.
Alias Analysis for Intermediate Code.
Proceedings of GCC Summit, June 2003.

[GuptaGCC] http://gcc.gnu.org/
ml/gcc-patches/2003-06/
msg01764.html

[Intel] Intel Itanium Architecture Software
Developer’s Manual. Volume 1:
Application Architecture. Volume 3:
Instruction Set.http://www.intel.
com/design/itanium/manuals/
iiasdmanual.htm

[Muthukumar05] Kalyan Muthukumar.
Compiling for Intel Itanium processor.



GCC Developers’ Summit 2005 • 13

Presented on Gelato GCC Workshop,
January 2005.

[Novillo05] Diego Novillo. Private
communication. 2005.

[Wilson05] James E. Wilson. Private
communication. 2005.



14 • Improving GCC instruction scheduling for IA-64


